基于航空影像的开放街道地图数据库质量自动评估

Boris Repasky, Timothy Payne, A. Dick
{"title":"基于航空影像的开放街道地图数据库质量自动评估","authors":"Boris Repasky, Timothy Payne, A. Dick","doi":"10.1109/DICTA51227.2020.9363412","DOIUrl":null,"url":null,"abstract":"Open data initiatives such as OpenStreetMap (OSM) are a powerful crowd sourced approach to data collection. However due to their crowd-sourced nature the quality of the database heavily depends on the enthusiasm and determination of the public. We propose a novel method based on variational autoencoder generative adversarial networks (VAE-GAN) together with an information theoretic measure of database quality based on the expected discrimination information between the original image and labels generated from OSM data. Experiments on overhead aerial imagery and segmentation masks generated from OSM data show that our proposed discrimination information measure is a promising measure to regional database quality in OSM.","PeriodicalId":348164,"journal":{"name":"2020 Digital Image Computing: Techniques and Applications (DICTA)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Assessment of Open Street Maps Database Quality using Aerial Imagery\",\"authors\":\"Boris Repasky, Timothy Payne, A. Dick\",\"doi\":\"10.1109/DICTA51227.2020.9363412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Open data initiatives such as OpenStreetMap (OSM) are a powerful crowd sourced approach to data collection. However due to their crowd-sourced nature the quality of the database heavily depends on the enthusiasm and determination of the public. We propose a novel method based on variational autoencoder generative adversarial networks (VAE-GAN) together with an information theoretic measure of database quality based on the expected discrimination information between the original image and labels generated from OSM data. Experiments on overhead aerial imagery and segmentation masks generated from OSM data show that our proposed discrimination information measure is a promising measure to regional database quality in OSM.\",\"PeriodicalId\":348164,\"journal\":{\"name\":\"2020 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA51227.2020.9363412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA51227.2020.9363412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

像OpenStreetMap (OSM)这样的开放数据计划是一种强大的数据收集方法。然而,由于其众包性质,数据库的质量在很大程度上取决于公众的热情和决心。我们提出了一种基于变分自编码器生成对抗网络(VAE-GAN)的新方法,以及一种基于原始图像和OSM数据生成的标签之间期望区分信息的数据库质量信息论度量。对OSM数据生成的高架航空图像和分割掩模进行的实验表明,我们提出的区分信息测度是一种很有前途的OSM区域数据库质量测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Assessment of Open Street Maps Database Quality using Aerial Imagery
Open data initiatives such as OpenStreetMap (OSM) are a powerful crowd sourced approach to data collection. However due to their crowd-sourced nature the quality of the database heavily depends on the enthusiasm and determination of the public. We propose a novel method based on variational autoencoder generative adversarial networks (VAE-GAN) together with an information theoretic measure of database quality based on the expected discrimination information between the original image and labels generated from OSM data. Experiments on overhead aerial imagery and segmentation masks generated from OSM data show that our proposed discrimination information measure is a promising measure to regional database quality in OSM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信