R-Mgspline:回溯式多梯度搜索在整数格上的多目标仿真优化

Eric A. Applegate, S. R. Hunter
{"title":"R-Mgspline:回溯式多梯度搜索在整数格上的多目标仿真优化","authors":"Eric A. Applegate, S. R. Hunter","doi":"10.1109/WSC40007.2019.9004719","DOIUrl":null,"url":null,"abstract":"We introduce the R-MGSPLINE (Retrospective Multi-Gradient Search with Piecewise Linear Interpolation and Neighborhood Enumeration) algorithm for finding a local efficient point when solving a multi-objective simulation optimization problem on an integer lattice. In this nonlinear optimization problem, each objective can only be observed with stochastic error and the decision variables are integer-valued. R-MGSPLINE uses a retrospective approximation (RA) framework to repeatedly call the MGSPLINE sample-path solver at a sequence of increasing sample sizes, using the solution from the previous RA iteration as a warm start for the current RA iteration. The MGSPLINE algorithm performs a line search along a common descent direction constructed from pseudo-gradients of each objective, followed by a neighborhood enumeration for certification. Numerical experiments demonstrate R-MGSPLINE’s empirical convergence to a local weakly efficient point.","PeriodicalId":127025,"journal":{"name":"2019 Winter Simulation Conference (WSC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"R-Mgspline: Retrospective Multi-Gradient Search for Multi-Objective Simulation Optimization on Integer Lattices\",\"authors\":\"Eric A. Applegate, S. R. Hunter\",\"doi\":\"10.1109/WSC40007.2019.9004719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the R-MGSPLINE (Retrospective Multi-Gradient Search with Piecewise Linear Interpolation and Neighborhood Enumeration) algorithm for finding a local efficient point when solving a multi-objective simulation optimization problem on an integer lattice. In this nonlinear optimization problem, each objective can only be observed with stochastic error and the decision variables are integer-valued. R-MGSPLINE uses a retrospective approximation (RA) framework to repeatedly call the MGSPLINE sample-path solver at a sequence of increasing sample sizes, using the solution from the previous RA iteration as a warm start for the current RA iteration. The MGSPLINE algorithm performs a line search along a common descent direction constructed from pseudo-gradients of each objective, followed by a neighborhood enumeration for certification. Numerical experiments demonstrate R-MGSPLINE’s empirical convergence to a local weakly efficient point.\",\"PeriodicalId\":127025,\"journal\":{\"name\":\"2019 Winter Simulation Conference (WSC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC40007.2019.9004719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC40007.2019.9004719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在求解整数格上的多目标仿真优化问题时,引入R-MGSPLINE(带分段线性插值和邻域枚举的回溯式多梯度搜索)算法来寻找局部有效点。在该非线性优化问题中,每个目标只能以随机误差观察,决策变量为整数值。R-MGSPLINE使用回溯近似(RA)框架,在增加样本量的序列上重复调用MGSPLINE样本路径求解器,使用先前RA迭代的解决方案作为当前RA迭代的热启动。MGSPLINE算法沿着由每个目标的伪梯度构造的共同下降方向进行直线搜索,然后进行邻域枚举进行认证。数值实验证明了R-MGSPLINE的经验收敛到局部弱有效点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
R-Mgspline: Retrospective Multi-Gradient Search for Multi-Objective Simulation Optimization on Integer Lattices
We introduce the R-MGSPLINE (Retrospective Multi-Gradient Search with Piecewise Linear Interpolation and Neighborhood Enumeration) algorithm for finding a local efficient point when solving a multi-objective simulation optimization problem on an integer lattice. In this nonlinear optimization problem, each objective can only be observed with stochastic error and the decision variables are integer-valued. R-MGSPLINE uses a retrospective approximation (RA) framework to repeatedly call the MGSPLINE sample-path solver at a sequence of increasing sample sizes, using the solution from the previous RA iteration as a warm start for the current RA iteration. The MGSPLINE algorithm performs a line search along a common descent direction constructed from pseudo-gradients of each objective, followed by a neighborhood enumeration for certification. Numerical experiments demonstrate R-MGSPLINE’s empirical convergence to a local weakly efficient point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信