{"title":"多尺度3D打印毛细管夹持器","authors":"M. Cavaiani, S. Dehaeck, Y. Vitry, P. Lambert","doi":"10.1109/MARSS.2018.8481145","DOIUrl":null,"url":null,"abstract":"Ahstract- This paper presents a capillary gripper able to pick and place sub-millimetric 1005 SMD components. It is manufactured by combining stereolithography for millimetric parts and two-photon lithography for smaller details. It is found that the similarity of resists used for both printers allows a good adherence between components. This combination allows innovative technical solutions for the capillary gripper design, such as a series of pillars of different lengths providing a novel release mechanism.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-Scale 3D Printed Capillary Gripper\",\"authors\":\"M. Cavaiani, S. Dehaeck, Y. Vitry, P. Lambert\",\"doi\":\"10.1109/MARSS.2018.8481145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ahstract- This paper presents a capillary gripper able to pick and place sub-millimetric 1005 SMD components. It is manufactured by combining stereolithography for millimetric parts and two-photon lithography for smaller details. It is found that the similarity of resists used for both printers allows a good adherence between components. This combination allows innovative technical solutions for the capillary gripper design, such as a series of pillars of different lengths providing a novel release mechanism.\",\"PeriodicalId\":118389,\"journal\":{\"name\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MARSS.2018.8481145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ahstract- This paper presents a capillary gripper able to pick and place sub-millimetric 1005 SMD components. It is manufactured by combining stereolithography for millimetric parts and two-photon lithography for smaller details. It is found that the similarity of resists used for both printers allows a good adherence between components. This combination allows innovative technical solutions for the capillary gripper design, such as a series of pillars of different lengths providing a novel release mechanism.