基于知识图的金融量化投资事件嵌入框架

Dawei Cheng, Fangzhou Yang, Xiaoyang Wang, Ying Zhang, Liqing Zhang
{"title":"基于知识图的金融量化投资事件嵌入框架","authors":"Dawei Cheng, Fangzhou Yang, Xiaoyang Wang, Ying Zhang, Liqing Zhang","doi":"10.1145/3397271.3401427","DOIUrl":null,"url":null,"abstract":"Event representative learning aims to embed news events into continuous space vectors for capturing syntactic and semantic information from text corpus, which is benefit to event-driven quantitative investments. However, the financial market reaction of events is also influenced by the lead-lag effect, which is driven by internal relationships. Therefore, in this paper, we present a knowledge graph-based event embedding framework for quantitative investments. In particular, we first extract structured events from raw texts, and construct the knowledge graph with the mentioned entities and relations simultaneously. Then, we leverage a joint model to merge the knowledge graph information into the objective function of an event embedding learning model. The learned representations are fed as inputs of downstream quantitative trading methods. Extensive experiments on real-world dataset demonstrate the effectiveness of the event embeddings learned from financial news and knowledge graphs. We also deploy the framework for quantitative algorithm trading. The accumulated portfolio return contributed by our method significantly outperforms other baselines.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Knowledge Graph-based Event Embedding Framework for Financial Quantitative Investments\",\"authors\":\"Dawei Cheng, Fangzhou Yang, Xiaoyang Wang, Ying Zhang, Liqing Zhang\",\"doi\":\"10.1145/3397271.3401427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event representative learning aims to embed news events into continuous space vectors for capturing syntactic and semantic information from text corpus, which is benefit to event-driven quantitative investments. However, the financial market reaction of events is also influenced by the lead-lag effect, which is driven by internal relationships. Therefore, in this paper, we present a knowledge graph-based event embedding framework for quantitative investments. In particular, we first extract structured events from raw texts, and construct the knowledge graph with the mentioned entities and relations simultaneously. Then, we leverage a joint model to merge the knowledge graph information into the objective function of an event embedding learning model. The learned representations are fed as inputs of downstream quantitative trading methods. Extensive experiments on real-world dataset demonstrate the effectiveness of the event embeddings learned from financial news and knowledge graphs. We also deploy the framework for quantitative algorithm trading. The accumulated portfolio return contributed by our method significantly outperforms other baselines.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

事件代表学习旨在将新闻事件嵌入到连续的空间向量中,从文本语料库中获取句法和语义信息,这有利于事件驱动的量化投资。然而,金融市场对事件的反应也受到超前滞后效应的影响,这是由内部关系驱动的。因此,本文提出了一种基于知识图的量化投资事件嵌入框架。特别是,我们首先从原始文本中提取结构化事件,并同时使用所提到的实体和关系构建知识图谱。然后,我们利用联合模型将知识图信息合并到事件嵌入学习模型的目标函数中。学习到的表示作为下游量化交易方法的输入。在真实数据集上的大量实验证明了从金融新闻和知识图中学习的事件嵌入的有效性。我们还部署了定量算法交易的框架。我们的方法带来的累积投资组合收益明显优于其他基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge Graph-based Event Embedding Framework for Financial Quantitative Investments
Event representative learning aims to embed news events into continuous space vectors for capturing syntactic and semantic information from text corpus, which is benefit to event-driven quantitative investments. However, the financial market reaction of events is also influenced by the lead-lag effect, which is driven by internal relationships. Therefore, in this paper, we present a knowledge graph-based event embedding framework for quantitative investments. In particular, we first extract structured events from raw texts, and construct the knowledge graph with the mentioned entities and relations simultaneously. Then, we leverage a joint model to merge the knowledge graph information into the objective function of an event embedding learning model. The learned representations are fed as inputs of downstream quantitative trading methods. Extensive experiments on real-world dataset demonstrate the effectiveness of the event embeddings learned from financial news and knowledge graphs. We also deploy the framework for quantitative algorithm trading. The accumulated portfolio return contributed by our method significantly outperforms other baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信