逻辑回归与人工神经网络在配电系统故障原因识别中的比较

L. Xu, M. Chow, X.Z. Gao
{"title":"逻辑回归与人工神经网络在配电系统故障原因识别中的比较","authors":"L. Xu, M. Chow, X.Z. Gao","doi":"10.1109/SMCIA.2005.1466960","DOIUrl":null,"url":null,"abstract":"Power distribution systems play an important role in modern society. Proper outage root cause identification is often essential for effective restorations when outages occur. This paper reports on the investigation and results of two classification methods: logistic regression and neural network applied in power distribution fault cause classifier. Logistic regression is seldom used in power distribution fault diagnosis, while neural network, has been extensively used in power system reliability researches. Evaluation criteria of the goodness of the classifier includes: correct classification rate, true positive rate, true negative rate, and geometric mean. Two major distribution faults, tree and animal contact, are used to illustrate the characteristics and effectiveness of the investigated techniques.","PeriodicalId":283950,"journal":{"name":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Comparisons of logistic regression and artificial neural network on power distribution systems fault cause identification\",\"authors\":\"L. Xu, M. Chow, X.Z. Gao\",\"doi\":\"10.1109/SMCIA.2005.1466960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power distribution systems play an important role in modern society. Proper outage root cause identification is often essential for effective restorations when outages occur. This paper reports on the investigation and results of two classification methods: logistic regression and neural network applied in power distribution fault cause classifier. Logistic regression is seldom used in power distribution fault diagnosis, while neural network, has been extensively used in power system reliability researches. Evaluation criteria of the goodness of the classifier includes: correct classification rate, true positive rate, true negative rate, and geometric mean. Two major distribution faults, tree and animal contact, are used to illustrate the characteristics and effectiveness of the investigated techniques.\",\"PeriodicalId\":283950,\"journal\":{\"name\":\"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMCIA.2005.1466960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.2005.1466960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

配电系统在现代社会中起着重要的作用。正确的停机根本原因识别对于发生停机时的有效恢复通常是必不可少的。本文报道了逻辑回归和神经网络两种分类方法在配电故障原因分类器中的应用研究和结果。逻辑回归在配电故障诊断中很少使用,而神经网络在电力系统可靠性研究中得到了广泛的应用。分类器优劣的评价标准包括:正确分类率、真阳性率、真阴性率、几何平均值。两种主要的分布断层,树木和动物接触,说明了所调查的技术的特点和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparisons of logistic regression and artificial neural network on power distribution systems fault cause identification
Power distribution systems play an important role in modern society. Proper outage root cause identification is often essential for effective restorations when outages occur. This paper reports on the investigation and results of two classification methods: logistic regression and neural network applied in power distribution fault cause classifier. Logistic regression is seldom used in power distribution fault diagnosis, while neural network, has been extensively used in power system reliability researches. Evaluation criteria of the goodness of the classifier includes: correct classification rate, true positive rate, true negative rate, and geometric mean. Two major distribution faults, tree and animal contact, are used to illustrate the characteristics and effectiveness of the investigated techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信