含水层中含一阶衰减和源浓度随时间变化的污染物运移的数学研究

R. O. Olayiwola, R. Jimoh, A. Yusuf, S. Abubakar
{"title":"含水层中含一阶衰减和源浓度随时间变化的污染物运移的数学研究","authors":"R. O. Olayiwola, R. Jimoh, A. Yusuf, S. Abubakar","doi":"10.13189/UJAM.2013.010212","DOIUrl":null,"url":null,"abstract":"A mathematical model describing the transport of a conservative contaminant through a homogeneous finite aquifer under transient flow is presented. We assume the aquifer is subjected to contamination due to the time-dependent source concentration. Both the sinusoidally varying and exponentially decreasing forms of seepage velocity are considered for the purposes of studying seasonal variation problems. We use the parameter-expanding method and seek direct eigenfunctions expansion technique to obtain analytical solution of the model. The results are presented graphically and discussed. It is discovered that the contaminant concentration decreases along temporal and spatial directions as initial dispersion coefficient increases and initial groundwater velocity decreases. This concentration decreases as time increases and differs at each point in the domain.","PeriodicalId":372283,"journal":{"name":"Universal Journal of Applied Mathematics","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mathematical Study of Contaminant Transport with First-order Decay and Time-dependent Source Concentration in an Aquifer\",\"authors\":\"R. O. Olayiwola, R. Jimoh, A. Yusuf, S. Abubakar\",\"doi\":\"10.13189/UJAM.2013.010212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model describing the transport of a conservative contaminant through a homogeneous finite aquifer under transient flow is presented. We assume the aquifer is subjected to contamination due to the time-dependent source concentration. Both the sinusoidally varying and exponentially decreasing forms of seepage velocity are considered for the purposes of studying seasonal variation problems. We use the parameter-expanding method and seek direct eigenfunctions expansion technique to obtain analytical solution of the model. The results are presented graphically and discussed. It is discovered that the contaminant concentration decreases along temporal and spatial directions as initial dispersion coefficient increases and initial groundwater velocity decreases. This concentration decreases as time increases and differs at each point in the domain.\",\"PeriodicalId\":372283,\"journal\":{\"name\":\"Universal Journal of Applied Mathematics\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJAM.2013.010212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJAM.2013.010212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种描述暂态流动条件下保守污染物在均匀有限含水层中运移的数学模型。我们假定含水层由于源浓度随时间的变化而受到污染。为了研究季节变化问题,考虑了渗流速度的正弦变化和指数下降两种形式。采用参数展开法,寻求直接特征函数展开技术,得到模型的解析解。结果用图形表示并进行了讨论。研究发现,随着初始弥散系数的增大和地下水初始流速的减小,污染物浓度沿时间和空间方向呈下降趋势。这种浓度随着时间的增加而降低,并且在区域的每个点上有所不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mathematical Study of Contaminant Transport with First-order Decay and Time-dependent Source Concentration in an Aquifer
A mathematical model describing the transport of a conservative contaminant through a homogeneous finite aquifer under transient flow is presented. We assume the aquifer is subjected to contamination due to the time-dependent source concentration. Both the sinusoidally varying and exponentially decreasing forms of seepage velocity are considered for the purposes of studying seasonal variation problems. We use the parameter-expanding method and seek direct eigenfunctions expansion technique to obtain analytical solution of the model. The results are presented graphically and discussed. It is discovered that the contaminant concentration decreases along temporal and spatial directions as initial dispersion coefficient increases and initial groundwater velocity decreases. This concentration decreases as time increases and differs at each point in the domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信