基于知识图的可解释过程分析的可解释性

Anne Füßl, V. Nissen
{"title":"基于知识图的可解释过程分析的可解释性","authors":"Anne Füßl, V. Nissen","doi":"10.1109/AIKE55402.2022.00008","DOIUrl":null,"url":null,"abstract":"The last decade produced rapid developments and powerful new technologies that are creating a huge upsurge in artificial intelligence research. However, for critical operational decisions (e.g., consulting services), the need for explanations and interpretable results are becoming a necessity. The integration of knowledge graphs that provide relevant background knowledge in machine-readable form, and machine learning methods represents a new form of hybrid intelligent systems that benefit from each other's strengths. Our research aims at an explainable system with a specific knowledge graph architecture that can generate human-understandable results even when no suitable domain experts are available. Against this background, the interpretability of a knowledge graph-based explainable artificial intelligence approach for business process analysis is focused. We design a framework of interpretation, and show how interpretable models are generated. Result paths on weaknesses and improvement measures related to a business process are used to produce stochastic decision trees, which improve the interpretability of results. This can lead to interesting consulting self-services for clients or be applied as a device for accelerating classical consulting projects.","PeriodicalId":441077,"journal":{"name":"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretability of Knowledge Graph-based Explainable Process Analysis\",\"authors\":\"Anne Füßl, V. Nissen\",\"doi\":\"10.1109/AIKE55402.2022.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last decade produced rapid developments and powerful new technologies that are creating a huge upsurge in artificial intelligence research. However, for critical operational decisions (e.g., consulting services), the need for explanations and interpretable results are becoming a necessity. The integration of knowledge graphs that provide relevant background knowledge in machine-readable form, and machine learning methods represents a new form of hybrid intelligent systems that benefit from each other's strengths. Our research aims at an explainable system with a specific knowledge graph architecture that can generate human-understandable results even when no suitable domain experts are available. Against this background, the interpretability of a knowledge graph-based explainable artificial intelligence approach for business process analysis is focused. We design a framework of interpretation, and show how interpretable models are generated. Result paths on weaknesses and improvement measures related to a business process are used to produce stochastic decision trees, which improve the interpretability of results. This can lead to interesting consulting self-services for clients or be applied as a device for accelerating classical consulting projects.\",\"PeriodicalId\":441077,\"journal\":{\"name\":\"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIKE55402.2022.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIKE55402.2022.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过去十年的快速发展和强大的新技术正在创造人工智能研究的巨大高潮。但是,对于关键的业务决策(例如,咨询服务),需要解释和可解释的结果正在成为一种必要。以机器可读形式提供相关背景知识的知识图与机器学习方法的集成代表了一种新的混合智能系统形式,它们可以相互受益。我们的研究目标是一个具有特定知识图谱架构的可解释系统,即使在没有合适的领域专家可用的情况下,也可以生成人类可理解的结果。在此背景下,重点研究了基于知识图的可解释人工智能业务流程分析方法的可解释性。我们设计了一个解释框架,并展示了如何生成可解释的模型。与业务流程相关的弱点和改进措施的结果路径用于生成随机决策树,从而提高结果的可解释性。这可以为客户提供有趣的自助咨询服务,也可以作为加速传统咨询项目的一种手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretability of Knowledge Graph-based Explainable Process Analysis
The last decade produced rapid developments and powerful new technologies that are creating a huge upsurge in artificial intelligence research. However, for critical operational decisions (e.g., consulting services), the need for explanations and interpretable results are becoming a necessity. The integration of knowledge graphs that provide relevant background knowledge in machine-readable form, and machine learning methods represents a new form of hybrid intelligent systems that benefit from each other's strengths. Our research aims at an explainable system with a specific knowledge graph architecture that can generate human-understandable results even when no suitable domain experts are available. Against this background, the interpretability of a knowledge graph-based explainable artificial intelligence approach for business process analysis is focused. We design a framework of interpretation, and show how interpretable models are generated. Result paths on weaknesses and improvement measures related to a business process are used to produce stochastic decision trees, which improve the interpretability of results. This can lead to interesting consulting self-services for clients or be applied as a device for accelerating classical consulting projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信