社区发现在学术社交网络中的应用

Enis Arslan, S. Akyokuş, M. Ganiz
{"title":"社区发现在学术社交网络中的应用","authors":"Enis Arslan, S. Akyokuş, M. Ganiz","doi":"10.1109/INISTA.2013.6577650","DOIUrl":null,"url":null,"abstract":"The objective of this study is to discover social communities in a social network using different social network community discovery methods that utilize metrics and structures like degree, clustering coefficient, k-cores, weak and strong components. We have used two different datasets and methods: K-core community discovery method for DBLP dataset and Main Path Analysis method for Arxiv High-energy physics theory citation network. At the end of the analyses, we have obtained several reports that represent the skeleton structure of the communities in the networks.","PeriodicalId":301458,"journal":{"name":"2013 IEEE INISTA","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An application of community discovery in academical social networks\",\"authors\":\"Enis Arslan, S. Akyokuş, M. Ganiz\",\"doi\":\"10.1109/INISTA.2013.6577650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to discover social communities in a social network using different social network community discovery methods that utilize metrics and structures like degree, clustering coefficient, k-cores, weak and strong components. We have used two different datasets and methods: K-core community discovery method for DBLP dataset and Main Path Analysis method for Arxiv High-energy physics theory citation network. At the end of the analyses, we have obtained several reports that represent the skeleton structure of the communities in the networks.\",\"PeriodicalId\":301458,\"journal\":{\"name\":\"2013 IEEE INISTA\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE INISTA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2013.6577650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE INISTA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2013.6577650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究的目的是利用不同的社会网络社区发现方法,利用度、聚类系数、k核、弱和强成分等指标和结构,发现社会网络中的社会社区。我们使用了两种不同的数据集和方法:DBLP数据集的K-core社区发现方法和Arxiv高能物理理论引文网络的主路径分析方法。在分析的最后,我们得到了一些报告,这些报告代表了网络中社区的骨架结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An application of community discovery in academical social networks
The objective of this study is to discover social communities in a social network using different social network community discovery methods that utilize metrics and structures like degree, clustering coefficient, k-cores, weak and strong components. We have used two different datasets and methods: K-core community discovery method for DBLP dataset and Main Path Analysis method for Arxiv High-energy physics theory citation network. At the end of the analyses, we have obtained several reports that represent the skeleton structure of the communities in the networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信