JMASM 52:使用R的极有效排列和自举假设检验

C. Chatzipantsiou, Marios Dimitriadis, M. Papadakis, M. Tsagris
{"title":"JMASM 52:使用R的极有效排列和自举假设检验","authors":"C. Chatzipantsiou, Marios Dimitriadis, M. Papadakis, M. Tsagris","doi":"10.22237/jmasm/1604189940","DOIUrl":null,"url":null,"abstract":"Re-sampling based statistical tests are known to be computationally heavy, but reliable when small sample sizes are available. Despite their nice theoretical properties not much effort has been put to make them efficient. In this paper we treat the case of Pearson correlation coefficient and two independent samples t-test. We propose a highly computationally efficient method for calculating permutation based p-values in these two cases. The method is general and can be applied or be adopted to other similar two sample mean or two mean vectors cases.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"JMASM 52: Extremely Efficient Permutation and Bootstrap Hypothesis Tests Using R\",\"authors\":\"C. Chatzipantsiou, Marios Dimitriadis, M. Papadakis, M. Tsagris\",\"doi\":\"10.22237/jmasm/1604189940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Re-sampling based statistical tests are known to be computationally heavy, but reliable when small sample sizes are available. Despite their nice theoretical properties not much effort has been put to make them efficient. In this paper we treat the case of Pearson correlation coefficient and two independent samples t-test. We propose a highly computationally efficient method for calculating permutation based p-values in these two cases. The method is general and can be applied or be adopted to other similar two sample mean or two mean vectors cases.\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/jmasm/1604189940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/jmasm/1604189940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

众所周知,基于重新抽样的统计检验计算量很大,但在可用的小样本量时是可靠的。尽管它们的理论性质很好,但人们并没有付出太多努力使它们变得有效。本文处理了Pearson相关系数和两个独立样本t检验的情况。我们提出了一种计算效率很高的方法来计算这两种情况下基于排列的p值。该方法具有通用性,可以应用于其他类似的两个样本均值或两个均值向量的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
JMASM 52: Extremely Efficient Permutation and Bootstrap Hypothesis Tests Using R
Re-sampling based statistical tests are known to be computationally heavy, but reliable when small sample sizes are available. Despite their nice theoretical properties not much effort has been put to make them efficient. In this paper we treat the case of Pearson correlation coefficient and two independent samples t-test. We propose a highly computationally efficient method for calculating permutation based p-values in these two cases. The method is general and can be applied or be adopted to other similar two sample mean or two mean vectors cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信