cnn辅助的生物细胞成像定量相显微镜

I. Shevkunov, M. Kandhavelu, K. Egiazarian
{"title":"cnn辅助的生物细胞成像定量相显微镜","authors":"I. Shevkunov, M. Kandhavelu, K. Egiazarian","doi":"10.1117/12.2668352","DOIUrl":null,"url":null,"abstract":"Phase imaging is a solution for the reconstruction of phase information from intensity observations. To make phase imaging possible, sophisticated extra systems are embedded into the existing imaging systems. Contrary, we propose a phase problem solution by DCNN-based framework, which is simple in terms of an optical system. We propose to replace optical lenses with computational algorithms such as CNN phase reconstruction and wavefront propagation. The framework is tested in simulation and real-life experimental phase imaging. To have real experiments with objects close to real-life biological cells, we simulated experimental training datasets on a phase-only spatial light modulator, where phase objects are modeled with corresponding phase distribution to biological cells.","PeriodicalId":278089,"journal":{"name":"European Conference on Biomedical Optics","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNN-assisted quantitative phase microscopy for biological cell imaging\",\"authors\":\"I. Shevkunov, M. Kandhavelu, K. Egiazarian\",\"doi\":\"10.1117/12.2668352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase imaging is a solution for the reconstruction of phase information from intensity observations. To make phase imaging possible, sophisticated extra systems are embedded into the existing imaging systems. Contrary, we propose a phase problem solution by DCNN-based framework, which is simple in terms of an optical system. We propose to replace optical lenses with computational algorithms such as CNN phase reconstruction and wavefront propagation. The framework is tested in simulation and real-life experimental phase imaging. To have real experiments with objects close to real-life biological cells, we simulated experimental training datasets on a phase-only spatial light modulator, where phase objects are modeled with corresponding phase distribution to biological cells.\",\"PeriodicalId\":278089,\"journal\":{\"name\":\"European Conference on Biomedical Optics\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Biomedical Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2668352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Biomedical Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2668352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相位成像是一种从强度观测中重建相位信息的解决方案。为了使相位成像成为可能,在现有的成像系统中嵌入了复杂的额外系统。相反,我们提出了一个基于dcnn的框架来解决相位问题,这在光学系统方面是简单的。我们建议用CNN相位重建和波前传播等计算算法代替光学透镜。该框架在仿真和现实实验中进行了相位成像测试。为了对接近真实生物细胞的物体进行真实实验,我们在纯相位空间光调制器上模拟实验训练数据集,其中相位物体与生物细胞相对应的相位分布进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN-assisted quantitative phase microscopy for biological cell imaging
Phase imaging is a solution for the reconstruction of phase information from intensity observations. To make phase imaging possible, sophisticated extra systems are embedded into the existing imaging systems. Contrary, we propose a phase problem solution by DCNN-based framework, which is simple in terms of an optical system. We propose to replace optical lenses with computational algorithms such as CNN phase reconstruction and wavefront propagation. The framework is tested in simulation and real-life experimental phase imaging. To have real experiments with objects close to real-life biological cells, we simulated experimental training datasets on a phase-only spatial light modulator, where phase objects are modeled with corresponding phase distribution to biological cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信