一个用Transformer生成期刊文章标题的方法

Matsumoto Riku, Kimura Masaomi
{"title":"一个用Transformer生成期刊文章标题的方法","authors":"Matsumoto Riku, Kimura Masaomi","doi":"10.23919/APSIPAASC55919.2022.9979942","DOIUrl":null,"url":null,"abstract":"While many methods of summarization have been proposed, there have been few methods to generate a title, especially for journal articles. However, the differences between summarization and creating a title are length and clause form. We propose a title generation model for a journal article based on Transformer, which refers to a wide range of the article. We propose to narrow down the abstract sentences to only important sentences before title generation so that the author's claim can be easily reflected in the title. We applied our method to journal articles published on arXiv.org and found that our model generated a title including words in the original title.","PeriodicalId":382967,"journal":{"name":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A title generation method with Transformer for journal articles\",\"authors\":\"Matsumoto Riku, Kimura Masaomi\",\"doi\":\"10.23919/APSIPAASC55919.2022.9979942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While many methods of summarization have been proposed, there have been few methods to generate a title, especially for journal articles. However, the differences between summarization and creating a title are length and clause form. We propose a title generation model for a journal article based on Transformer, which refers to a wide range of the article. We propose to narrow down the abstract sentences to only important sentences before title generation so that the author's claim can be easily reflected in the title. We applied our method to journal articles published on arXiv.org and found that our model generated a title including words in the original title.\",\"PeriodicalId\":382967,\"journal\":{\"name\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPAASC55919.2022.9979942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPAASC55919.2022.9979942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然已经提出了许多摘要方法,但很少有方法来生成标题,特别是对于期刊文章。然而,摘要和创建标题之间的区别在于长度和子句形式。我们提出了一种基于Transformer的期刊文章标题生成模型,该模型涉及广泛的期刊文章。我们建议在标题生成之前,将抽象句缩小到只保留重要的句子,这样作者的主张就可以很容易地反映在标题中。我们将我们的方法应用于发表在arXiv.org上的期刊文章,发现我们的模型生成了一个包含原始标题中的单词的标题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A title generation method with Transformer for journal articles
While many methods of summarization have been proposed, there have been few methods to generate a title, especially for journal articles. However, the differences between summarization and creating a title are length and clause form. We propose a title generation model for a journal article based on Transformer, which refers to a wide range of the article. We propose to narrow down the abstract sentences to only important sentences before title generation so that the author's claim can be easily reflected in the title. We applied our method to journal articles published on arXiv.org and found that our model generated a title including words in the original title.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信