麦克斯韦方程组的不连续Galerkin方法的守恒性质

E. Gjonaj, T. Lau, T. Weiland
{"title":"麦克斯韦方程组的不连续Galerkin方法的守恒性质","authors":"E. Gjonaj, T. Lau, T. Weiland","doi":"10.1109/ICEAA.2007.4387311","DOIUrl":null,"url":null,"abstract":"We investigate the conservation properties of the centered DO formulation for Maxwell equations. In particular, we state the problem and derive the criteria for charge conservation. It is shown that the centered scheme guarantees strict charge conservation for Cartesian discretizations with tensor product basis functions of arbitrary order. On unstructured grids, however, the conservation of charge is inherently violated. The reasons for this are of purely topological nature.","PeriodicalId":273595,"journal":{"name":"2007 International Conference on Electromagnetics in Advanced Applications","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Conservation Properties of the Discontinuous Galerkin Method for Maxwell Equations\",\"authors\":\"E. Gjonaj, T. Lau, T. Weiland\",\"doi\":\"10.1109/ICEAA.2007.4387311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the conservation properties of the centered DO formulation for Maxwell equations. In particular, we state the problem and derive the criteria for charge conservation. It is shown that the centered scheme guarantees strict charge conservation for Cartesian discretizations with tensor product basis functions of arbitrary order. On unstructured grids, however, the conservation of charge is inherently violated. The reasons for this are of purely topological nature.\",\"PeriodicalId\":273595,\"journal\":{\"name\":\"2007 International Conference on Electromagnetics in Advanced Applications\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Electromagnetics in Advanced Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAA.2007.4387311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2007.4387311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们研究了麦克斯韦方程组中心DO公式的守恒性质。特别地,我们陈述了问题并推导了电荷守恒的判据。证明了中心格式保证了任意阶张量积基函数的笛卡尔离散化的严格电荷守恒。然而,在非结构化网格上,电荷守恒本质上是被违反的。其原因纯粹是拓扑性质的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conservation Properties of the Discontinuous Galerkin Method for Maxwell Equations
We investigate the conservation properties of the centered DO formulation for Maxwell equations. In particular, we state the problem and derive the criteria for charge conservation. It is shown that the centered scheme guarantees strict charge conservation for Cartesian discretizations with tensor product basis functions of arbitrary order. On unstructured grids, however, the conservation of charge is inherently violated. The reasons for this are of purely topological nature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信