Megumi Ito, M. Ishii, A. Okazaki, Sangbum Kim, J. Okazawa, A. Nomura, K. Hosokawa, W. Haensch
{"title":"基于pcm的神经形态电路轻量刷新方法","authors":"Megumi Ito, M. Ishii, A. Okazaki, Sangbum Kim, J. Okazawa, A. Nomura, K. Hosokawa, W. Haensch","doi":"10.1109/NANO.2018.8626327","DOIUrl":null,"url":null,"abstract":"Phase change memory (PCM) is being explored as a synaptic nanodevice for scalable and low-power neuromorphic circuits. We present a novel and lightweight method to refresh PCM cells after they saturate at their maximum conductance during the learning process. Our learning system is an event-based Restricted Boltzmann Machine with Spike Time Dependent Plasticity update rule using a modified contrastive divergence algorithm. By using our event-based neuromorphic circuit simulator and the MNIST handwritten digit dataset, we show that our refresh method reduces power consumption by decreasing the number of SET and RESET programming pulses while maintaining high learning accuracy.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Lightweight Refresh Method for PCM-based Neuromorphic Circuits\",\"authors\":\"Megumi Ito, M. Ishii, A. Okazaki, Sangbum Kim, J. Okazawa, A. Nomura, K. Hosokawa, W. Haensch\",\"doi\":\"10.1109/NANO.2018.8626327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase change memory (PCM) is being explored as a synaptic nanodevice for scalable and low-power neuromorphic circuits. We present a novel and lightweight method to refresh PCM cells after they saturate at their maximum conductance during the learning process. Our learning system is an event-based Restricted Boltzmann Machine with Spike Time Dependent Plasticity update rule using a modified contrastive divergence algorithm. By using our event-based neuromorphic circuit simulator and the MNIST handwritten digit dataset, we show that our refresh method reduces power consumption by decreasing the number of SET and RESET programming pulses while maintaining high learning accuracy.\",\"PeriodicalId\":425521,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2018.8626327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lightweight Refresh Method for PCM-based Neuromorphic Circuits
Phase change memory (PCM) is being explored as a synaptic nanodevice for scalable and low-power neuromorphic circuits. We present a novel and lightweight method to refresh PCM cells after they saturate at their maximum conductance during the learning process. Our learning system is an event-based Restricted Boltzmann Machine with Spike Time Dependent Plasticity update rule using a modified contrastive divergence algorithm. By using our event-based neuromorphic circuit simulator and the MNIST handwritten digit dataset, we show that our refresh method reduces power consumption by decreasing the number of SET and RESET programming pulses while maintaining high learning accuracy.