CYSAS-S3:一个新的数据集,用于验证支持军事行动的网络态势感知相关工具

Roumen Daton Medenou, Victor Manuel Calzado Mayo, Miriam Garcia Balufo, Miguel Páramo del Castrillo, Francisco José González Garrido, Álvaro Luis Martínez, David Nevado Catalán, Ao Hu, David Sandoval Rodríguez-Bermejo, J. M. Vidal, Gerardo Ramis Pasqual De Riquelme, A. Berardi, P. Santis, Francesco Torelli, S. Sánchez
{"title":"CYSAS-S3:一个新的数据集,用于验证支持军事行动的网络态势感知相关工具","authors":"Roumen Daton Medenou, Victor Manuel Calzado Mayo, Miriam Garcia Balufo, Miguel Páramo del Castrillo, Francisco José González Garrido, Álvaro Luis Martínez, David Nevado Catalán, Ao Hu, David Sandoval Rodríguez-Bermejo, J. M. Vidal, Gerardo Ramis Pasqual De Riquelme, A. Berardi, P. Santis, Francesco Torelli, S. Sánchez","doi":"10.1145/3407023.3409222","DOIUrl":null,"url":null,"abstract":"The lack of suitable datasets and evaluation processes entails one of the most challenging gaps on the digital transformation era, where data-driven solutions like machine learning algorithms constitute a key pillar of the digitalization, virtualization and analytical on the emerging cyber-physical and ergonomic capabilities. This problem is even greater in the cyber defence domain, where for security or technical reasons, there is not data publicly or on-demand available concerning the role of the cyberspace on military operations. In this context, the expression popularized by the machine learning community \"you go to the war with the data you have, not the data you might want\" can be literally applied. In order to contribute to overcome this gap, this paper introduces CYSAS-S3, a novel dataset designed and created as the result of a research action that explores the principal needs on datasets by cyber commands, resulting in the generation of a collection of samples that correlated the impact of Advanced Persistent Threat (APT) behaviours and each phase of their cyber kill chain, regarding mission-level operations and goals.","PeriodicalId":121225,"journal":{"name":"Proceedings of the 15th International Conference on Availability, Reliability and Security","volume":"565 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"CYSAS-S3: a novel dataset for validating cyber situational awareness related tools for supporting military operations\",\"authors\":\"Roumen Daton Medenou, Victor Manuel Calzado Mayo, Miriam Garcia Balufo, Miguel Páramo del Castrillo, Francisco José González Garrido, Álvaro Luis Martínez, David Nevado Catalán, Ao Hu, David Sandoval Rodríguez-Bermejo, J. M. Vidal, Gerardo Ramis Pasqual De Riquelme, A. Berardi, P. Santis, Francesco Torelli, S. Sánchez\",\"doi\":\"10.1145/3407023.3409222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lack of suitable datasets and evaluation processes entails one of the most challenging gaps on the digital transformation era, where data-driven solutions like machine learning algorithms constitute a key pillar of the digitalization, virtualization and analytical on the emerging cyber-physical and ergonomic capabilities. This problem is even greater in the cyber defence domain, where for security or technical reasons, there is not data publicly or on-demand available concerning the role of the cyberspace on military operations. In this context, the expression popularized by the machine learning community \\\"you go to the war with the data you have, not the data you might want\\\" can be literally applied. In order to contribute to overcome this gap, this paper introduces CYSAS-S3, a novel dataset designed and created as the result of a research action that explores the principal needs on datasets by cyber commands, resulting in the generation of a collection of samples that correlated the impact of Advanced Persistent Threat (APT) behaviours and each phase of their cyber kill chain, regarding mission-level operations and goals.\",\"PeriodicalId\":121225,\"journal\":{\"name\":\"Proceedings of the 15th International Conference on Availability, Reliability and Security\",\"volume\":\"565 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th International Conference on Availability, Reliability and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3407023.3409222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3407023.3409222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

缺乏合适的数据集和评估流程是数字化转型时代最具挑战性的差距之一,在数字化转型时代,数据驱动的解决方案(如机器学习算法)构成了新兴网络物理和人体工程学能力的数字化、虚拟化和分析的关键支柱。在网络防御领域,这一问题更为严重,因为出于安全或技术原因,没有公开或按需提供有关网络空间在军事行动中的作用的数据。在这种情况下,机器学习社区流行的说法“你带着你拥有的数据去打仗,而不是你可能想要的数据”可以字面上应用。为了有助于克服这一差距,本文介绍了CYSAS-S3,这是一种新型数据集,是一项研究行动的结果,该研究行动探索了网络命令对数据集的主要需求,从而生成了一组样本,这些样本与高级持续威胁(APT)行为的影响及其网络杀伤链的每个阶段有关,涉及任务级操作和目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CYSAS-S3: a novel dataset for validating cyber situational awareness related tools for supporting military operations
The lack of suitable datasets and evaluation processes entails one of the most challenging gaps on the digital transformation era, where data-driven solutions like machine learning algorithms constitute a key pillar of the digitalization, virtualization and analytical on the emerging cyber-physical and ergonomic capabilities. This problem is even greater in the cyber defence domain, where for security or technical reasons, there is not data publicly or on-demand available concerning the role of the cyberspace on military operations. In this context, the expression popularized by the machine learning community "you go to the war with the data you have, not the data you might want" can be literally applied. In order to contribute to overcome this gap, this paper introduces CYSAS-S3, a novel dataset designed and created as the result of a research action that explores the principal needs on datasets by cyber commands, resulting in the generation of a collection of samples that correlated the impact of Advanced Persistent Threat (APT) behaviours and each phase of their cyber kill chain, regarding mission-level operations and goals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信