二值无线传感器网络中基于创新符号的粒子滤波分布式估计

F. Aounallah, R. Amara, M. Alouane
{"title":"二值无线传感器网络中基于创新符号的粒子滤波分布式估计","authors":"F. Aounallah, R. Amara, M. Alouane","doi":"10.1109/SPAWC.2008.4641684","DOIUrl":null,"url":null,"abstract":"Distributed estimation is a major feature in wireless sensor networks (WSNs). Recently, hard quantized observations based on sign of innovation (SOI) were used to perform optimal distributed filtering involving thus the SOI Kalman filter (KF)/extended KF (EKF) [1]. In this paper, a SOI-particle filter (SOIPF) is derived to enhance the performance of the distributed estimation procedure. On one hand, the use of the particle filter avoids the imperative linearization in the EKF and on the other hand it guarantees a part of optimality for nonlinear/non Gaussian state models. The SOIPF proposed in this paper is applied in the target tracking context. The experimental results obtained for different simulations demonstrate the good tracking ability of the SOIPF compared to the SOIEKF as well as the consistency of the so given trajectory estimate.","PeriodicalId":197154,"journal":{"name":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Particle filtering based on sign of innovation for distributed estimation in binary Wireless Sensor Networks\",\"authors\":\"F. Aounallah, R. Amara, M. Alouane\",\"doi\":\"10.1109/SPAWC.2008.4641684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed estimation is a major feature in wireless sensor networks (WSNs). Recently, hard quantized observations based on sign of innovation (SOI) were used to perform optimal distributed filtering involving thus the SOI Kalman filter (KF)/extended KF (EKF) [1]. In this paper, a SOI-particle filter (SOIPF) is derived to enhance the performance of the distributed estimation procedure. On one hand, the use of the particle filter avoids the imperative linearization in the EKF and on the other hand it guarantees a part of optimality for nonlinear/non Gaussian state models. The SOIPF proposed in this paper is applied in the target tracking context. The experimental results obtained for different simulations demonstrate the good tracking ability of the SOIPF compared to the SOIEKF as well as the consistency of the so given trajectory estimate.\",\"PeriodicalId\":197154,\"journal\":{\"name\":\"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2008.4641684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2008.4641684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

分布式估计是无线传感器网络的一个重要特征。最近,基于创新符号(SOI)的硬量化观测被用于执行最优分布式滤波,涉及SOI卡尔曼滤波(KF)/扩展KF (EKF)[1]。为了提高分布式估计过程的性能,本文提出了一种SOIPF -粒子滤波器。粒子滤波的使用一方面避免了EKF的强制线性化,另一方面保证了非线性/非高斯状态模型的部分最优性。将本文提出的SOIPF应用于目标跟踪环境中。不同仿真的实验结果表明,与SOIEKF相比,SOIPF具有良好的跟踪能力,且给定的轨迹估计具有一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle filtering based on sign of innovation for distributed estimation in binary Wireless Sensor Networks
Distributed estimation is a major feature in wireless sensor networks (WSNs). Recently, hard quantized observations based on sign of innovation (SOI) were used to perform optimal distributed filtering involving thus the SOI Kalman filter (KF)/extended KF (EKF) [1]. In this paper, a SOI-particle filter (SOIPF) is derived to enhance the performance of the distributed estimation procedure. On one hand, the use of the particle filter avoids the imperative linearization in the EKF and on the other hand it guarantees a part of optimality for nonlinear/non Gaussian state models. The SOIPF proposed in this paper is applied in the target tracking context. The experimental results obtained for different simulations demonstrate the good tracking ability of the SOIPF compared to the SOIEKF as well as the consistency of the so given trajectory estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信