基于SOM监督神经网络的数控铣床刀具状态无传感器智能分类器

G. Mota-Valtierra, L. Franco-Gasca, G. H. Ruiz
{"title":"基于SOM监督神经网络的数控铣床刀具状态无传感器智能分类器","authors":"G. Mota-Valtierra, L. Franco-Gasca, G. H. Ruiz","doi":"10.1504/IJAISC.2011.042710","DOIUrl":null,"url":null,"abstract":"Industry has monitoring systems to determine the tool condition and to ensure quality. This paper presents an intelligent classification system which determines the status of cutters in a CNC milling machine. The tool states are detected through the analysis of the cutting forces drawn from the spindle motors currents. A wavelet transformation was used in order to compress the data and to optimise the classifier structure. Then a supervised SOM neural network is responsible for carrying out the classification of the signal. Achieving a reliability of 95%, the system is capable of detecting breakage and a worn cutter.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensorless intelligent classifier of tool condition in a CNC milling machine using a SOM supervised neural network\",\"authors\":\"G. Mota-Valtierra, L. Franco-Gasca, G. H. Ruiz\",\"doi\":\"10.1504/IJAISC.2011.042710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industry has monitoring systems to determine the tool condition and to ensure quality. This paper presents an intelligent classification system which determines the status of cutters in a CNC milling machine. The tool states are detected through the analysis of the cutting forces drawn from the spindle motors currents. A wavelet transformation was used in order to compress the data and to optimise the classifier structure. Then a supervised SOM neural network is responsible for carrying out the classification of the signal. Achieving a reliability of 95%, the system is capable of detecting breakage and a worn cutter.\",\"PeriodicalId\":364571,\"journal\":{\"name\":\"Int. J. Artif. Intell. Soft Comput.\",\"volume\":\"187 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Soft Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAISC.2011.042710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2011.042710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工业有监控系统来确定刀具状况并确保质量。介绍了一种数控铣床刀具状态智能分类系统。通过分析主轴电机电流产生的切削力来检测刀具状态。为了压缩数据并优化分类器结构,采用了小波变换。然后由一个监督SOM神经网络负责对信号进行分类。该系统的可靠性达到95%,能够检测破损和磨损的刀具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensorless intelligent classifier of tool condition in a CNC milling machine using a SOM supervised neural network
Industry has monitoring systems to determine the tool condition and to ensure quality. This paper presents an intelligent classification system which determines the status of cutters in a CNC milling machine. The tool states are detected through the analysis of the cutting forces drawn from the spindle motors currents. A wavelet transformation was used in order to compress the data and to optimise the classifier structure. Then a supervised SOM neural network is responsible for carrying out the classification of the signal. Achieving a reliability of 95%, the system is capable of detecting breakage and a worn cutter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信