基于线性代数的三角形计数在异构环境下的细粒度任务处理:(更新静态图挑战)

Abdurrahman Yasar, S. Rajamanickam, Jonathan W. Berry, Michael M. Wolf, Jeffrey S. Young, Ümit V. Çatalyürek
{"title":"基于线性代数的三角形计数在异构环境下的细粒度任务处理:(更新静态图挑战)","authors":"Abdurrahman Yasar, S. Rajamanickam, Jonathan W. Berry, Michael M. Wolf, Jeffrey S. Young, Ümit V. Çatalyürek","doi":"10.1109/HPEC.2019.8916233","DOIUrl":null,"url":null,"abstract":"Triangle counting is a representative graph problem that shows the challenges of improving graph algorithm performance using algorithmic techniques and adopting graph algorithms to new architectures. In this paper, we describe an update to the linear-algebraic formulation of the triangle counting problem. Our new approach relies on fine-grained tasking based on a tile layout. We adopt this task based algorithm to heterogeneous architectures (CPUs and GPUs) for up to 10.8x speed up over past year’s graph challenge submission. This implementation also results in the fastest kernel time known at time of publication for real-world graphs like twitter (3.7 second) and friendster (1.8 seconds) on GPU accelerators when the graph is GPU resident. This is a 1.7 and 1.2 time improvement over previous state-of-the-art triangle counting on GPUs. We also improved end-to-end execution time by overlapping computation and communication of the graph to the GPUs. In terms of end-to-end execution time, our implementation also achieves the fastest end-to-end times due to very low overhead costs.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Linear Algebra-Based Triangle Counting via Fine-Grained Tasking on Heterogeneous Environments : (Update on Static Graph Challenge)\",\"authors\":\"Abdurrahman Yasar, S. Rajamanickam, Jonathan W. Berry, Michael M. Wolf, Jeffrey S. Young, Ümit V. Çatalyürek\",\"doi\":\"10.1109/HPEC.2019.8916233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Triangle counting is a representative graph problem that shows the challenges of improving graph algorithm performance using algorithmic techniques and adopting graph algorithms to new architectures. In this paper, we describe an update to the linear-algebraic formulation of the triangle counting problem. Our new approach relies on fine-grained tasking based on a tile layout. We adopt this task based algorithm to heterogeneous architectures (CPUs and GPUs) for up to 10.8x speed up over past year’s graph challenge submission. This implementation also results in the fastest kernel time known at time of publication for real-world graphs like twitter (3.7 second) and friendster (1.8 seconds) on GPU accelerators when the graph is GPU resident. This is a 1.7 and 1.2 time improvement over previous state-of-the-art triangle counting on GPUs. We also improved end-to-end execution time by overlapping computation and communication of the graph to the GPUs. In terms of end-to-end execution time, our implementation also achieves the fastest end-to-end times due to very low overhead costs.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

三角形计数是一个典型的图问题,它显示了使用算法技术提高图算法性能和将图算法应用于新架构的挑战。在本文中,我们描述了对三角形计数问题的线性代数公式的一个更新。我们的新方法依赖于基于tile布局的细粒度任务。我们将这种基于任务的算法应用于异构架构(cpu和gpu),比去年的图形挑战提交速度提高了10.8倍。当图形驻留在GPU上时,这种实现还可以在GPU加速器上实现twitter(3.7秒)和friendster(1.8秒)等现实世界图形在发布时已知的最快内核时间。这比以前最先进的gpu三角计数提高了1.7和1.2倍。我们还通过重叠计算和图形与gpu的通信提高了端到端执行时间。在端到端执行时间方面,由于开销成本非常低,我们的实现也实现了最快的端到端时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Algebra-Based Triangle Counting via Fine-Grained Tasking on Heterogeneous Environments : (Update on Static Graph Challenge)
Triangle counting is a representative graph problem that shows the challenges of improving graph algorithm performance using algorithmic techniques and adopting graph algorithms to new architectures. In this paper, we describe an update to the linear-algebraic formulation of the triangle counting problem. Our new approach relies on fine-grained tasking based on a tile layout. We adopt this task based algorithm to heterogeneous architectures (CPUs and GPUs) for up to 10.8x speed up over past year’s graph challenge submission. This implementation also results in the fastest kernel time known at time of publication for real-world graphs like twitter (3.7 second) and friendster (1.8 seconds) on GPU accelerators when the graph is GPU resident. This is a 1.7 and 1.2 time improvement over previous state-of-the-art triangle counting on GPUs. We also improved end-to-end execution time by overlapping computation and communication of the graph to the GPUs. In terms of end-to-end execution time, our implementation also achieves the fastest end-to-end times due to very low overhead costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信