基于隐马尔可夫模型的多目标跟踪

X. Xie, R. Evans
{"title":"基于隐马尔可夫模型的多目标跟踪","authors":"X. Xie, R. Evans","doi":"10.1109/RADAR.1990.201100","DOIUrl":null,"url":null,"abstract":"The application of hidden Markov models (HMM) to the problem of tracking multiple targets is discussed. The tracker generates multiple discrete Viterbi tracks and automatically accounts for track iteration, termination, and ambiguous measurements. The tracker is not smoothing-based, as are most existing systems such as Kalman and PDA (probabilistic data association) trackers, but is discrete in the sense of the finite state Viterbi algorithm. Simulation shows that in some cases it is possible to avoid the route of data association and directly compute the maximum likelihood mixed track.<<ETX>>","PeriodicalId":441674,"journal":{"name":"IEEE International Conference on Radar","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Multiple target tracking using hidden Markov models\",\"authors\":\"X. Xie, R. Evans\",\"doi\":\"10.1109/RADAR.1990.201100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of hidden Markov models (HMM) to the problem of tracking multiple targets is discussed. The tracker generates multiple discrete Viterbi tracks and automatically accounts for track iteration, termination, and ambiguous measurements. The tracker is not smoothing-based, as are most existing systems such as Kalman and PDA (probabilistic data association) trackers, but is discrete in the sense of the finite state Viterbi algorithm. Simulation shows that in some cases it is possible to avoid the route of data association and directly compute the maximum likelihood mixed track.<<ETX>>\",\"PeriodicalId\":441674,\"journal\":{\"name\":\"IEEE International Conference on Radar\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Radar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.1990.201100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.1990.201100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

讨论了隐马尔可夫模型在多目标跟踪问题中的应用。跟踪器生成多个离散的维特比轨迹,并自动考虑轨迹迭代、终止和模糊测量。跟踪器不像大多数现有系统(如Kalman和PDA(概率数据关联)跟踪器)那样基于平滑,而是在有限状态Viterbi算法的意义上是离散的。仿真结果表明,在某些情况下,可以避免数据关联路由,直接计算最大似然混合航迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple target tracking using hidden Markov models
The application of hidden Markov models (HMM) to the problem of tracking multiple targets is discussed. The tracker generates multiple discrete Viterbi tracks and automatically accounts for track iteration, termination, and ambiguous measurements. The tracker is not smoothing-based, as are most existing systems such as Kalman and PDA (probabilistic data association) trackers, but is discrete in the sense of the finite state Viterbi algorithm. Simulation shows that in some cases it is possible to avoid the route of data association and directly compute the maximum likelihood mixed track.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信