Patrick Obmann, J. Fuhrmann, J. Moreira, H. Pretl, A. Springer
{"title":"一种补偿28nm CMOS级联码功率放大器PVT变化的电路技术","authors":"Patrick Obmann, J. Fuhrmann, J. Moreira, H. Pretl, A. Springer","doi":"10.1109/GEMIC.2015.7107770","DOIUrl":null,"url":null,"abstract":"This paper presents a method to compensate CMOS process-, voltage-, and temperature (PVT) variations in a linear two-stage RF power amplifier (PA). The proposed circuit technique mitigates bias point fluctuations caused by non-controllable uncertainties like wafer-dependent electron mobility, increasing die temperature due to substrate self-heating, or supply voltage deviations. A scaled PA replica cascode circuit and a controlled current mirror form a feedback loop which stabilizes the PA operation point over a wide range of PVT variations. As demonstrated by simulations and verified by measurements, the PA operating conditions have been stabilized over a temperature range of 90°C and more than 0.5V supply change. The proposed biasing scheme has been implemented using a 28nm standard CMOS process. The PA is able to deliver more than one Watt of RF output power at a peak power-added efficiency (PAE) of 33% at 1.8GHz center frequency operation.","PeriodicalId":229585,"journal":{"name":"2015 German Microwave Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A circuit technique to compensate PVT variations in a 28 nm CMOS cascode power amplifier\",\"authors\":\"Patrick Obmann, J. Fuhrmann, J. Moreira, H. Pretl, A. Springer\",\"doi\":\"10.1109/GEMIC.2015.7107770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to compensate CMOS process-, voltage-, and temperature (PVT) variations in a linear two-stage RF power amplifier (PA). The proposed circuit technique mitigates bias point fluctuations caused by non-controllable uncertainties like wafer-dependent electron mobility, increasing die temperature due to substrate self-heating, or supply voltage deviations. A scaled PA replica cascode circuit and a controlled current mirror form a feedback loop which stabilizes the PA operation point over a wide range of PVT variations. As demonstrated by simulations and verified by measurements, the PA operating conditions have been stabilized over a temperature range of 90°C and more than 0.5V supply change. The proposed biasing scheme has been implemented using a 28nm standard CMOS process. The PA is able to deliver more than one Watt of RF output power at a peak power-added efficiency (PAE) of 33% at 1.8GHz center frequency operation.\",\"PeriodicalId\":229585,\"journal\":{\"name\":\"2015 German Microwave Conference\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 German Microwave Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEMIC.2015.7107770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 German Microwave Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEMIC.2015.7107770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A circuit technique to compensate PVT variations in a 28 nm CMOS cascode power amplifier
This paper presents a method to compensate CMOS process-, voltage-, and temperature (PVT) variations in a linear two-stage RF power amplifier (PA). The proposed circuit technique mitigates bias point fluctuations caused by non-controllable uncertainties like wafer-dependent electron mobility, increasing die temperature due to substrate self-heating, or supply voltage deviations. A scaled PA replica cascode circuit and a controlled current mirror form a feedback loop which stabilizes the PA operation point over a wide range of PVT variations. As demonstrated by simulations and verified by measurements, the PA operating conditions have been stabilized over a temperature range of 90°C and more than 0.5V supply change. The proposed biasing scheme has been implemented using a 28nm standard CMOS process. The PA is able to deliver more than one Watt of RF output power at a peak power-added efficiency (PAE) of 33% at 1.8GHz center frequency operation.