用功能图式理解社交媒体叙事

Xinru Yan, Aakanksha Naik, Yohan Jo, C. Rosé
{"title":"用功能图式理解社交媒体叙事","authors":"Xinru Yan, Aakanksha Naik, Yohan Jo, C. Rosé","doi":"10.18653/v1/W19-3403","DOIUrl":null,"url":null,"abstract":"We propose a novel take on understanding narratives in social media, focusing on learning ”functional story schemas”, which consist of sets of stereotypical functional structures. We develop an unsupervised pipeline to extract schemas and apply our method to Reddit posts to detect schematic structures that are characteristic of different subreddits. We validate our schemas through human interpretation and evaluate their utility via a text classification task. Our experiments show that extracted schemas capture distinctive structural patterns in different subreddits, improving classification performance of several models by 2.4% on average. We also observe that these schemas serve as lenses that reveal community norms.","PeriodicalId":296321,"journal":{"name":"Proceedings of the Second Workshop on Storytelling","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Using Functional Schemas to Understand Social Media Narratives\",\"authors\":\"Xinru Yan, Aakanksha Naik, Yohan Jo, C. Rosé\",\"doi\":\"10.18653/v1/W19-3403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel take on understanding narratives in social media, focusing on learning ”functional story schemas”, which consist of sets of stereotypical functional structures. We develop an unsupervised pipeline to extract schemas and apply our method to Reddit posts to detect schematic structures that are characteristic of different subreddits. We validate our schemas through human interpretation and evaluate their utility via a text classification task. Our experiments show that extracted schemas capture distinctive structural patterns in different subreddits, improving classification performance of several models by 2.4% on average. We also observe that these schemas serve as lenses that reveal community norms.\",\"PeriodicalId\":296321,\"journal\":{\"name\":\"Proceedings of the Second Workshop on Storytelling\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second Workshop on Storytelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-3403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Storytelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一种新的理解社交媒体叙事的方法,重点是学习“功能故事图式”,它由一系列刻板的功能结构组成。我们开发了一个无监督的管道来提取模式,并将我们的方法应用于Reddit帖子,以检测具有不同子Reddit特征的示意图结构。我们通过人工解释验证模式,并通过文本分类任务评估它们的实用性。我们的实验表明,提取的模式捕获了不同subreddits中不同的结构模式,将几个模型的分类性能平均提高了2.4%。我们还观察到,这些模式充当了揭示社区规范的镜头。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Functional Schemas to Understand Social Media Narratives
We propose a novel take on understanding narratives in social media, focusing on learning ”functional story schemas”, which consist of sets of stereotypical functional structures. We develop an unsupervised pipeline to extract schemas and apply our method to Reddit posts to detect schematic structures that are characteristic of different subreddits. We validate our schemas through human interpretation and evaluate their utility via a text classification task. Our experiments show that extracted schemas capture distinctive structural patterns in different subreddits, improving classification performance of several models by 2.4% on average. We also observe that these schemas serve as lenses that reveal community norms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信