{"title":"正则伪超卵圆和偶特征的正则伪卵圆","authors":"J. Thas","doi":"10.2140/iig.2019.17.77","DOIUrl":null,"url":null,"abstract":"S. Rottey and G. Van de Voorde characterized regular pseudo-ovals of PG(3n - 1, q), q = 2^h, h >1 and n prime. Here an alternative proof is given and slightly stronger results are obtained.","PeriodicalId":127937,"journal":{"name":"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial","volume":"338 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regular pseudo-hyperovals and regular pseudo-ovals in even characteristic\",\"authors\":\"J. Thas\",\"doi\":\"10.2140/iig.2019.17.77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"S. Rottey and G. Van de Voorde characterized regular pseudo-ovals of PG(3n - 1, q), q = 2^h, h >1 and n prime. Here an alternative proof is given and slightly stronger results are obtained.\",\"PeriodicalId\":127937,\"journal\":{\"name\":\"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial\",\"volume\":\"338 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/iig.2019.17.77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/iig.2019.17.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
S. Rottey和G. Van de Voorde刻画了PG(3n - 1, q)、q = 2^h、h >1和n '的正则伪椭圆。这里给出了另一种证明,得到了稍强一些的结果。
Regular pseudo-hyperovals and regular pseudo-ovals in even characteristic
S. Rottey and G. Van de Voorde characterized regular pseudo-ovals of PG(3n - 1, q), q = 2^h, h >1 and n prime. Here an alternative proof is given and slightly stronger results are obtained.