使用机器学习的网络钓鱼和欺骗检测

Hadi El Karhani, Riad Al Jamal, Yorgo Bou Samra, I. Elhajj, A. Kayssi
{"title":"使用机器学习的网络钓鱼和欺骗检测","authors":"Hadi El Karhani, Riad Al Jamal, Yorgo Bou Samra, I. Elhajj, A. Kayssi","doi":"10.1109/CSR57506.2023.10224954","DOIUrl":null,"url":null,"abstract":"We propose the use of a hybridized machine learning model to detect phishing and smishing - phishing using SMS messages - attacks with the use of several extracted features related to domains, coupled with natural language processing (NLP) trained on actual smishing messages to accurately detect attacks. Moreover, we propose an integration of the detection system with the open-source threat intelligence platform, MISP (Malware Information Sharing Platform). This allows for more effective storage and use of flagged phishing domains. The model was trained and tested using publicly available data as well as data provided by TELUS Corp. The results show an accuracy of 99.40% and an Fl score in excess of 99%.","PeriodicalId":354918,"journal":{"name":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phishing and Smishing Detection Using Machine Learning\",\"authors\":\"Hadi El Karhani, Riad Al Jamal, Yorgo Bou Samra, I. Elhajj, A. Kayssi\",\"doi\":\"10.1109/CSR57506.2023.10224954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the use of a hybridized machine learning model to detect phishing and smishing - phishing using SMS messages - attacks with the use of several extracted features related to domains, coupled with natural language processing (NLP) trained on actual smishing messages to accurately detect attacks. Moreover, we propose an integration of the detection system with the open-source threat intelligence platform, MISP (Malware Information Sharing Platform). This allows for more effective storage and use of flagged phishing domains. The model was trained and tested using publicly available data as well as data provided by TELUS Corp. The results show an accuracy of 99.40% and an Fl score in excess of 99%.\",\"PeriodicalId\":354918,\"journal\":{\"name\":\"2023 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Cyber Security and Resilience (CSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSR57506.2023.10224954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR57506.2023.10224954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建议使用混合机器学习模型来检测网络钓鱼和短信钓鱼——使用短信进行网络钓鱼——攻击,使用与域相关的几个提取特征,再加上对实际短信进行训练的自然语言处理(NLP)来准确检测攻击。此外,我们还提出了一种与开源威胁情报平台MISP(恶意软件信息共享平台)集成的检测系统。这允许更有效地存储和使用标记的网络钓鱼域。该模型使用公开可用的数据以及TELUS公司提供的数据进行了训练和测试,结果显示准确率为99.40%,Fl分数超过99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phishing and Smishing Detection Using Machine Learning
We propose the use of a hybridized machine learning model to detect phishing and smishing - phishing using SMS messages - attacks with the use of several extracted features related to domains, coupled with natural language processing (NLP) trained on actual smishing messages to accurately detect attacks. Moreover, we propose an integration of the detection system with the open-source threat intelligence platform, MISP (Malware Information Sharing Platform). This allows for more effective storage and use of flagged phishing domains. The model was trained and tested using publicly available data as well as data provided by TELUS Corp. The results show an accuracy of 99.40% and an Fl score in excess of 99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信