Manish Arora, Srilatha Manne, Yasuko Eckert, Indrani Paul, N. Jayasena, D. Tullsen
{"title":"现代硬件中实现的核心功率门控策略的比较","authors":"Manish Arora, Srilatha Manne, Yasuko Eckert, Indrani Paul, N. Jayasena, D. Tullsen","doi":"10.1145/2591971.2592017","DOIUrl":null,"url":null,"abstract":"Idle power is a significant contributor to overall energy consumption in modern multi-core processors. Cores can enter a full-sleep state, also known as C6, to reduce idle power; however, entering C6 incurs performance and power overheads. Since power gating can result in negative savings, hardware vendors implement various algorithms to manage C6 entry. In this paper, we examine state-of-the-art C6 entry algorithms and present a comparative analysis in the context of consumer and CPU-GPU benchmarks.","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A comparison of core power gating strategies implemented in modern hardware\",\"authors\":\"Manish Arora, Srilatha Manne, Yasuko Eckert, Indrani Paul, N. Jayasena, D. Tullsen\",\"doi\":\"10.1145/2591971.2592017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Idle power is a significant contributor to overall energy consumption in modern multi-core processors. Cores can enter a full-sleep state, also known as C6, to reduce idle power; however, entering C6 incurs performance and power overheads. Since power gating can result in negative savings, hardware vendors implement various algorithms to manage C6 entry. In this paper, we examine state-of-the-art C6 entry algorithms and present a comparative analysis in the context of consumer and CPU-GPU benchmarks.\",\"PeriodicalId\":306456,\"journal\":{\"name\":\"Measurement and Modeling of Computer Systems\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591971.2592017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591971.2592017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparison of core power gating strategies implemented in modern hardware
Idle power is a significant contributor to overall energy consumption in modern multi-core processors. Cores can enter a full-sleep state, also known as C6, to reduce idle power; however, entering C6 incurs performance and power overheads. Since power gating can result in negative savings, hardware vendors implement various algorithms to manage C6 entry. In this paper, we examine state-of-the-art C6 entry algorithms and present a comparative analysis in the context of consumer and CPU-GPU benchmarks.