改进的DCI_Closed算法

Y. Miao, Hong Wang
{"title":"改进的DCI_Closed算法","authors":"Y. Miao, Hong Wang","doi":"10.1109/INCoS.2015.11","DOIUrl":null,"url":null,"abstract":"Frequent itemsets mining will not conducive to data analysis. Because of frequent itemsets mining produce very large amount of frequent itemsets in the case large data. Frequent closed itemsets provides a lossless frequent item sets, the smallest representation. This paper aims at the problem of shortage of the DCI_Closed algorithm in the process of mining efficiency, puts forward a kind of improved DCI_Closed algorithm to improve the efficiency of mining, the algorithm references the concept of co-occurrence itemsets and use the nature of the co-occurrence itemsets to prune operation on the 1-itemsets. And improve the efficiency of the algorithm. The experimental results show that the improved DCI_Closed algorithm is better than DCI_Closed algorithm on running time.","PeriodicalId":345650,"journal":{"name":"2015 International Conference on Intelligent Networking and Collaborative Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved DCI_Closed Algorithm\",\"authors\":\"Y. Miao, Hong Wang\",\"doi\":\"10.1109/INCoS.2015.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequent itemsets mining will not conducive to data analysis. Because of frequent itemsets mining produce very large amount of frequent itemsets in the case large data. Frequent closed itemsets provides a lossless frequent item sets, the smallest representation. This paper aims at the problem of shortage of the DCI_Closed algorithm in the process of mining efficiency, puts forward a kind of improved DCI_Closed algorithm to improve the efficiency of mining, the algorithm references the concept of co-occurrence itemsets and use the nature of the co-occurrence itemsets to prune operation on the 1-itemsets. And improve the efficiency of the algorithm. The experimental results show that the improved DCI_Closed algorithm is better than DCI_Closed algorithm on running time.\",\"PeriodicalId\":345650,\"journal\":{\"name\":\"2015 International Conference on Intelligent Networking and Collaborative Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Intelligent Networking and Collaborative Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INCoS.2015.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCoS.2015.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

频繁的项集挖掘不利于数据分析。由于频繁项集挖掘在案例大数据中产生了非常大量的频繁项集。频繁闭项集提供了一种无损频繁项集的最小表示形式。本文针对DCI_Closed算法在挖掘效率过程中存在的不足问题,提出了一种改进的DCI_Closed算法来提高挖掘效率,该算法参考了共现项集的概念,利用共现项集的性质对1项集进行剪剪操作。并提高了算法的效率。实验结果表明,改进的DCI_Closed算法在运行时间上优于DCI_Closed算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved DCI_Closed Algorithm
Frequent itemsets mining will not conducive to data analysis. Because of frequent itemsets mining produce very large amount of frequent itemsets in the case large data. Frequent closed itemsets provides a lossless frequent item sets, the smallest representation. This paper aims at the problem of shortage of the DCI_Closed algorithm in the process of mining efficiency, puts forward a kind of improved DCI_Closed algorithm to improve the efficiency of mining, the algorithm references the concept of co-occurrence itemsets and use the nature of the co-occurrence itemsets to prune operation on the 1-itemsets. And improve the efficiency of the algorithm. The experimental results show that the improved DCI_Closed algorithm is better than DCI_Closed algorithm on running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信