查找维基百科的新闻引文

B. Fetahu, K. Markert, W. Nejdl, Avishek Anand
{"title":"查找维基百科的新闻引文","authors":"B. Fetahu, K. Markert, W. Nejdl, Avishek Anand","doi":"10.1145/2983323.2983808","DOIUrl":null,"url":null,"abstract":"An important editing policy in Wikipedia is to provide citations for added statements in Wikipedia pages, where statements can be arbitrary pieces of text, ranging from a sentence to a paragraph. In many cases citations are either outdated or missing altogether. In this work we address the problem of finding and updating news citations for statements in entity pages. We propose a two-stage supervised approach for this problem. In the first step, we construct a classifier to find out whether statements need a news citation or other kinds of citations (web, book, journal, etc.). In the second step, we develop a news citation algorithm for Wikipedia statements, which recommends appropriate citations from a given news collection. Apart from IR techniques that use the statement to query the news collection, we also formalize three properties of an appropriate citation, namely: (i) the citation should entail the Wikipedia statement, (ii) the statement should be central to the citation, and (iii) the citation should be from an authoritative source. We perform an extensive evaluation of both steps, using 20 million articles from a real-world news collection. Our results are quite promising, and show that we can perform this task with high precision and at scale.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Finding News Citations for Wikipedia\",\"authors\":\"B. Fetahu, K. Markert, W. Nejdl, Avishek Anand\",\"doi\":\"10.1145/2983323.2983808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important editing policy in Wikipedia is to provide citations for added statements in Wikipedia pages, where statements can be arbitrary pieces of text, ranging from a sentence to a paragraph. In many cases citations are either outdated or missing altogether. In this work we address the problem of finding and updating news citations for statements in entity pages. We propose a two-stage supervised approach for this problem. In the first step, we construct a classifier to find out whether statements need a news citation or other kinds of citations (web, book, journal, etc.). In the second step, we develop a news citation algorithm for Wikipedia statements, which recommends appropriate citations from a given news collection. Apart from IR techniques that use the statement to query the news collection, we also formalize three properties of an appropriate citation, namely: (i) the citation should entail the Wikipedia statement, (ii) the statement should be central to the citation, and (iii) the citation should be from an authoritative source. We perform an extensive evaluation of both steps, using 20 million articles from a real-world news collection. Our results are quite promising, and show that we can perform this task with high precision and at scale.\",\"PeriodicalId\":250808,\"journal\":{\"name\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983323.2983808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

维基百科中一个重要的编辑策略是为维基百科页面中添加的语句提供引用,其中的语句可以是任意的文本片段,从一个句子到一个段落。在许多情况下,引文要么过时,要么完全缺失。在这项工作中,我们解决了在实体页面中为语句查找和更新新闻引用的问题。我们提出了一个两阶段监督的方法来解决这个问题。在第一步中,我们构建一个分类器来找出语句是否需要新闻引用或其他类型的引用(网络,书籍,期刊等)。在第二步中,我们为维基百科语句开发了一个新闻引用算法,该算法从给定的新闻集合中推荐适当的引用。除了使用声明来查询新闻集合的IR技术外,我们还形式化了适当引用的三个属性,即:(i)引用应该包含维基百科的声明,(ii)该声明应该是引用的中心,以及(iii)引用应该来自权威来源。我们使用来自真实世界新闻集合的2000万篇文章,对这两个步骤进行了广泛的评估。我们的结果非常有希望,并且表明我们可以高精度和大规模地执行这项任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding News Citations for Wikipedia
An important editing policy in Wikipedia is to provide citations for added statements in Wikipedia pages, where statements can be arbitrary pieces of text, ranging from a sentence to a paragraph. In many cases citations are either outdated or missing altogether. In this work we address the problem of finding and updating news citations for statements in entity pages. We propose a two-stage supervised approach for this problem. In the first step, we construct a classifier to find out whether statements need a news citation or other kinds of citations (web, book, journal, etc.). In the second step, we develop a news citation algorithm for Wikipedia statements, which recommends appropriate citations from a given news collection. Apart from IR techniques that use the statement to query the news collection, we also formalize three properties of an appropriate citation, namely: (i) the citation should entail the Wikipedia statement, (ii) the statement should be central to the citation, and (iii) the citation should be from an authoritative source. We perform an extensive evaluation of both steps, using 20 million articles from a real-world news collection. Our results are quite promising, and show that we can perform this task with high precision and at scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信