美式足球的自动解译与标引

M. Lazarescu, S. Venkatesh, G. West, T. Caelli
{"title":"美式足球的自动解译与标引","authors":"M. Lazarescu, S. Venkatesh, G. West, T. Caelli","doi":"10.1109/MMCS.1999.779303","DOIUrl":null,"url":null,"abstract":"Combines natural language understanding and image processing with incremental learning to develop a system that can automatically interpret and index American Football. We have developed a model for representing spatio-temporal characteristics of multiple objects in dynamic scenes in this domain. Our representation combines expert knowledge, domain knowledge, spatial knowledge and temporal knowledge. We also present an incremental learning algorithm to improve the knowledge base as well as to keep previously developed concepts consistent with new data. The advantages of the incremental learning algorithm are that is that it does not split concepts and it generates a compact conceptual hierarchy which does not store instances.","PeriodicalId":408680,"journal":{"name":"Proceedings IEEE International Conference on Multimedia Computing and Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"On the automated interpretation and indexing of American Football\",\"authors\":\"M. Lazarescu, S. Venkatesh, G. West, T. Caelli\",\"doi\":\"10.1109/MMCS.1999.779303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combines natural language understanding and image processing with incremental learning to develop a system that can automatically interpret and index American Football. We have developed a model for representing spatio-temporal characteristics of multiple objects in dynamic scenes in this domain. Our representation combines expert knowledge, domain knowledge, spatial knowledge and temporal knowledge. We also present an incremental learning algorithm to improve the knowledge base as well as to keep previously developed concepts consistent with new data. The advantages of the incremental learning algorithm are that is that it does not split concepts and it generates a compact conceptual hierarchy which does not store instances.\",\"PeriodicalId\":408680,\"journal\":{\"name\":\"Proceedings IEEE International Conference on Multimedia Computing and Systems\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Conference on Multimedia Computing and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMCS.1999.779303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Multimedia Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMCS.1999.779303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

将自然语言理解和图像处理与增量学习相结合,开发一个可以自动解释和索引美式足球的系统。我们开发了一个模型来表示该领域中动态场景中多个对象的时空特征。我们的表示结合了专家知识、领域知识、空间知识和时间知识。我们还提出了一种增量学习算法来改进知识库,并使以前开发的概念与新数据保持一致。增量学习算法的优点是,它不拆分概念,它产生一个紧凑的概念层次结构,不存储实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the automated interpretation and indexing of American Football
Combines natural language understanding and image processing with incremental learning to develop a system that can automatically interpret and index American Football. We have developed a model for representing spatio-temporal characteristics of multiple objects in dynamic scenes in this domain. Our representation combines expert knowledge, domain knowledge, spatial knowledge and temporal knowledge. We also present an incremental learning algorithm to improve the knowledge base as well as to keep previously developed concepts consistent with new data. The advantages of the incremental learning algorithm are that is that it does not split concepts and it generates a compact conceptual hierarchy which does not store instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信