Wassapon Watanakeesuntorn, Keichi Takahashi, Koheix Ichikawa, Joseph Park, G. Sugihara, Ryousei Takano, J. Haga, G. Pao
{"title":"单神经元分辨率下全脑动力学的大规模并行因果推理","authors":"Wassapon Watanakeesuntorn, Keichi Takahashi, Koheix Ichikawa, Joseph Park, G. Sugihara, Ryousei Takano, J. Haga, G. Pao","doi":"10.1109/ICPADS51040.2020.00035","DOIUrl":null,"url":null,"abstract":"Empirical Dynamic Modeling (EDM) is a nonlinear time series causal inference framework. The latest implementation of EDM, cppEDM, has only been used for small datasets due to computational cost. With the growth of data collection capabilities, there is a great need to identify causal relationships in large datasets. We present mpEDM, a parallel distributed implementation of EDM optimized for modern GPU-centric supercomputers. We improve the original algorithm to reduce redundant computation and optimize the implementation to fully utilize hardware resources such as GPUs and SIMD units. As a use case, we run mpEDM on AI Bridging Cloud Infrastructure (ABCI) using datasets of an entire animal brain sampled at single neuron resolution to identify dynamical causation patterns across the brain. mpEDM is 1,530× faster than cppEDM and a dataset containing 101,729 neuron was analyzed in 199 seconds on 512 nodes. This is the largest EDM causal inference achieved to date.","PeriodicalId":196548,"journal":{"name":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Massively Parallel Causal Inference of Whole Brain Dynamics at Single Neuron Resolution\",\"authors\":\"Wassapon Watanakeesuntorn, Keichi Takahashi, Koheix Ichikawa, Joseph Park, G. Sugihara, Ryousei Takano, J. Haga, G. Pao\",\"doi\":\"10.1109/ICPADS51040.2020.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Empirical Dynamic Modeling (EDM) is a nonlinear time series causal inference framework. The latest implementation of EDM, cppEDM, has only been used for small datasets due to computational cost. With the growth of data collection capabilities, there is a great need to identify causal relationships in large datasets. We present mpEDM, a parallel distributed implementation of EDM optimized for modern GPU-centric supercomputers. We improve the original algorithm to reduce redundant computation and optimize the implementation to fully utilize hardware resources such as GPUs and SIMD units. As a use case, we run mpEDM on AI Bridging Cloud Infrastructure (ABCI) using datasets of an entire animal brain sampled at single neuron resolution to identify dynamical causation patterns across the brain. mpEDM is 1,530× faster than cppEDM and a dataset containing 101,729 neuron was analyzed in 199 seconds on 512 nodes. This is the largest EDM causal inference achieved to date.\",\"PeriodicalId\":196548,\"journal\":{\"name\":\"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS51040.2020.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS51040.2020.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Massively Parallel Causal Inference of Whole Brain Dynamics at Single Neuron Resolution
Empirical Dynamic Modeling (EDM) is a nonlinear time series causal inference framework. The latest implementation of EDM, cppEDM, has only been used for small datasets due to computational cost. With the growth of data collection capabilities, there is a great need to identify causal relationships in large datasets. We present mpEDM, a parallel distributed implementation of EDM optimized for modern GPU-centric supercomputers. We improve the original algorithm to reduce redundant computation and optimize the implementation to fully utilize hardware resources such as GPUs and SIMD units. As a use case, we run mpEDM on AI Bridging Cloud Infrastructure (ABCI) using datasets of an entire animal brain sampled at single neuron resolution to identify dynamical causation patterns across the brain. mpEDM is 1,530× faster than cppEDM and a dataset containing 101,729 neuron was analyzed in 199 seconds on 512 nodes. This is the largest EDM causal inference achieved to date.