对无乘法器二维FIR滤波器的通带和阻带表面积进行了尺寸分析

J. Djordjevic-Kozarov, V. Pavlovic
{"title":"对无乘法器二维FIR滤波器的通带和阻带表面积进行了尺寸分析","authors":"J. Djordjevic-Kozarov, V. Pavlovic","doi":"10.1109/TELSKS.2013.6704437","DOIUrl":null,"url":null,"abstract":"The paper presents detailed analysis of the size of pass-band and stop-band of multiplierless linear-phase 2D FIR filter function with diamond sharpness spike. Normalized surface area of the filter function pass-band is 8,148153 × 10-5 for given maximal attenuation of 0,28 dB. Normalized surface area of the filter function stop-band is 98,6931156 % for the given minimal attenuation of 100 dB.","PeriodicalId":144044,"journal":{"name":"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size analysis surface area of the pass-band and stopband of multiplierless 2D FIR filter\",\"authors\":\"J. Djordjevic-Kozarov, V. Pavlovic\",\"doi\":\"10.1109/TELSKS.2013.6704437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents detailed analysis of the size of pass-band and stop-band of multiplierless linear-phase 2D FIR filter function with diamond sharpness spike. Normalized surface area of the filter function pass-band is 8,148153 × 10-5 for given maximal attenuation of 0,28 dB. Normalized surface area of the filter function stop-band is 98,6931156 % for the given minimal attenuation of 100 dB.\",\"PeriodicalId\":144044,\"journal\":{\"name\":\"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELSKS.2013.6704437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSKS.2013.6704437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文详细分析了菱形尖峰无乘法线相二维FIR滤波器的通带和阻带大小。给定最大衰减为0.28 dB时,滤波器函数通带的归一化表面积为8,148153 × 10-5。在给定的最小衰减为100 dB时,滤波器函数阻带的归一化表面积为98,6931156%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Size analysis surface area of the pass-band and stopband of multiplierless 2D FIR filter
The paper presents detailed analysis of the size of pass-band and stop-band of multiplierless linear-phase 2D FIR filter function with diamond sharpness spike. Normalized surface area of the filter function pass-band is 8,148153 × 10-5 for given maximal attenuation of 0,28 dB. Normalized surface area of the filter function stop-band is 98,6931156 % for the given minimal attenuation of 100 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信