准全局对立模糊阈值

H. Tizhoosh, Farhang Sahba
{"title":"准全局对立模糊阈值","authors":"H. Tizhoosh, Farhang Sahba","doi":"10.1109/FUZZY.2009.5276887","DOIUrl":null,"url":null,"abstract":"Opposition-based computing is the paradigm for incorporating entities along with their opposites within the search, optimization and learning mechanisms. In this work, we introduce the notion of “opposite fuzzy sets” in order to use the entropy difference between a fuzzy set and its opposite to carry out object discrimination in digital images. A quasi-global scheme is used to execute the calculations, which can be employed by any other existing thresholding technique. Results for prostate ultrasound images have been provided to verify the performance whereas expert's markings have been used as gold standard.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Quasi-global oppositional fuzzy thresholding\",\"authors\":\"H. Tizhoosh, Farhang Sahba\",\"doi\":\"10.1109/FUZZY.2009.5276887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Opposition-based computing is the paradigm for incorporating entities along with their opposites within the search, optimization and learning mechanisms. In this work, we introduce the notion of “opposite fuzzy sets” in order to use the entropy difference between a fuzzy set and its opposite to carry out object discrimination in digital images. A quasi-global scheme is used to execute the calculations, which can be employed by any other existing thresholding technique. Results for prostate ultrasound images have been provided to verify the performance whereas expert's markings have been used as gold standard.\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5276887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5276887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

基于对立的计算是在搜索、优化和学习机制中结合实体及其对立面的范式。在这项工作中,我们引入了“对向模糊集”的概念,以便利用模糊集与其对向之间的熵差来进行数字图像中的目标识别。使用准全局方案来执行计算,该方案可用于任何其他现有的阈值处理技术。提供了前列腺超声图像的结果来验证性能,而专家的标记已被用作金标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-global oppositional fuzzy thresholding
Opposition-based computing is the paradigm for incorporating entities along with their opposites within the search, optimization and learning mechanisms. In this work, we introduce the notion of “opposite fuzzy sets” in order to use the entropy difference between a fuzzy set and its opposite to carry out object discrimination in digital images. A quasi-global scheme is used to execute the calculations, which can be employed by any other existing thresholding technique. Results for prostate ultrasound images have been provided to verify the performance whereas expert's markings have been used as gold standard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信