基于背景建模和时空模板匹配技术的视频人体活动自动识别

C. M. Sharma, A. Kushwaha, S. Nigam, A. Khare
{"title":"基于背景建模和时空模板匹配技术的视频人体活动自动识别","authors":"C. M. Sharma, A. Kushwaha, S. Nigam, A. Khare","doi":"10.1145/2007052.2007072","DOIUrl":null,"url":null,"abstract":"Human activity recognition is a challenging area of research because of its various potential applications in visual surveillance. A spatio-temporal template matching based approach for activity recognition is proposed in this paper. We model the background in a scene using a simple statistical model and extract the foreground objects in a scene. Spatio-temporal templates are constructed using the motion history images (MHI) and object shape information for different human activities in a video like walking, standing, bending, sleeping and jumping. Experimental results show that the method can recognize these multiple activities for multiple objects with accuracy and speed.","PeriodicalId":348804,"journal":{"name":"International Conference on Advances in Computing and Artificial Intelligence","volume":"328 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Automatic human activity recognition in video using background modeling and spatio-temporal template matching based technique\",\"authors\":\"C. M. Sharma, A. Kushwaha, S. Nigam, A. Khare\",\"doi\":\"10.1145/2007052.2007072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activity recognition is a challenging area of research because of its various potential applications in visual surveillance. A spatio-temporal template matching based approach for activity recognition is proposed in this paper. We model the background in a scene using a simple statistical model and extract the foreground objects in a scene. Spatio-temporal templates are constructed using the motion history images (MHI) and object shape information for different human activities in a video like walking, standing, bending, sleeping and jumping. Experimental results show that the method can recognize these multiple activities for multiple objects with accuracy and speed.\",\"PeriodicalId\":348804,\"journal\":{\"name\":\"International Conference on Advances in Computing and Artificial Intelligence\",\"volume\":\"328 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advances in Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2007052.2007072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advances in Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2007052.2007072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

人类活动识别是一个具有挑战性的研究领域,因为它在视觉监控中有各种潜在的应用。提出了一种基于时空模板匹配的活动识别方法。我们使用简单的统计模型对场景中的背景进行建模,并提取场景中的前景对象。利用运动历史图像(motion history images, MHI)和物体形状信息构建视频中不同人类活动的时空模板,如行走、站立、弯曲、睡眠和跳跃。实验结果表明,该方法可以准确、快速地识别多个目标的多个活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic human activity recognition in video using background modeling and spatio-temporal template matching based technique
Human activity recognition is a challenging area of research because of its various potential applications in visual surveillance. A spatio-temporal template matching based approach for activity recognition is proposed in this paper. We model the background in a scene using a simple statistical model and extract the foreground objects in a scene. Spatio-temporal templates are constructed using the motion history images (MHI) and object shape information for different human activities in a video like walking, standing, bending, sleeping and jumping. Experimental results show that the method can recognize these multiple activities for multiple objects with accuracy and speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信