用一组10个多边形平铺平面

Chao Yang
{"title":"用一组10个多边形平铺平面","authors":"Chao Yang","doi":"10.1142/s0218195923500012","DOIUrl":null,"url":null,"abstract":"There exists a linear algorithm to decide whether a polyomino tessellates the plane by translation only. On the other hand, the problem of deciding whether a set of [Formula: see text] or more polyominoes can tile the plane by translation is undecidable. We narrow the gap between decidable and undecidable by showing that it remains undecidable for a set of [Formula: see text] polyominoes, which partially solves a conjecture posed by Ollinger.","PeriodicalId":269811,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tiling the Plane with a Set of Ten Polyominoes\",\"authors\":\"Chao Yang\",\"doi\":\"10.1142/s0218195923500012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There exists a linear algorithm to decide whether a polyomino tessellates the plane by translation only. On the other hand, the problem of deciding whether a set of [Formula: see text] or more polyominoes can tile the plane by translation is undecidable. We narrow the gap between decidable and undecidable by showing that it remains undecidable for a set of [Formula: see text] polyominoes, which partially solves a conjecture posed by Ollinger.\",\"PeriodicalId\":269811,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218195923500012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218195923500012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

存在一种线性算法来确定多边形是否只通过平移来镶嵌平面。另一方面,决定一组[公式:见文本]或更多多边形是否可以通过平移平铺平面的问题是无法确定的。我们缩小了可判定和不可判定之间的差距,证明了一组[公式:见文本]多项式仍然是不可判定的,这部分解决了Ollinger提出的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tiling the Plane with a Set of Ten Polyominoes
There exists a linear algorithm to decide whether a polyomino tessellates the plane by translation only. On the other hand, the problem of deciding whether a set of [Formula: see text] or more polyominoes can tile the plane by translation is undecidable. We narrow the gap between decidable and undecidable by showing that it remains undecidable for a set of [Formula: see text] polyominoes, which partially solves a conjecture posed by Ollinger.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信