高阶张量模型中积分曲线估计的全局速率最优性

C. Banerjee, Людмила Александровна Саханенко, L. Sakhanenko, David C. Zhu
{"title":"高阶张量模型中积分曲线估计的全局速率最优性","authors":"C. Banerjee, Людмила Александровна Саханенко, L. Sakhanenko, David C. Zhu","doi":"10.4213/tvp5534","DOIUrl":null,"url":null,"abstract":"Вдохновленные применениями в нейровизуализации, мы рассматриваем проблему установления глобальной минимаксной нижней границы в модели тензора высокого порядка. В частности, описываемая нами методология позволяет получить глобальную минимаксную границу для оценок интегральных кривых, предложенных в работе О. Кармайкла и второго автора 2015 г., при полупараметрической постановке задачи. Теоретические результаты настоящей работы гарантируют, что оценки, используемые для отслеживания сложной структуры волокон внутри живого человеческого мозга и построенные по данным, полученным из диффузионной тензорной МРТ с высоким угловым разрешением (HARDI), оптимальны не только локально, но и глобально. Таким образом, глобальная минимаксная граница асимптотического риска оценок предоставит квантификацию неопределенности для метода оценки во всей области изображения. В дополнение к теоретическим результатам проводится подробное эмпирическое исследование с целью определить оптимальное число градиентных направлений для протоколов нейровизуализации, которые мы далее иллюстрируем анализом сканирования мозга живого человека по реальным данным.","PeriodicalId":132929,"journal":{"name":"Teoriya Veroyatnostei i ee Primeneniya","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global rate optimality of integral curve estimators in high order tensor models\",\"authors\":\"C. Banerjee, Людмила Александровна Саханенко, L. Sakhanenko, David C. Zhu\",\"doi\":\"10.4213/tvp5534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Вдохновленные применениями в нейровизуализации, мы рассматриваем проблему установления глобальной минимаксной нижней границы в модели тензора высокого порядка. В частности, описываемая нами методология позволяет получить глобальную минимаксную границу для оценок интегральных кривых, предложенных в работе О. Кармайкла и второго автора 2015 г., при полупараметрической постановке задачи. Теоретические результаты настоящей работы гарантируют, что оценки, используемые для отслеживания сложной структуры волокон внутри живого человеческого мозга и построенные по данным, полученным из диффузионной тензорной МРТ с высоким угловым разрешением (HARDI), оптимальны не только локально, но и глобально. Таким образом, глобальная минимаксная граница асимптотического риска оценок предоставит квантификацию неопределенности для метода оценки во всей области изображения. В дополнение к теоретическим результатам проводится подробное эмпирическое исследование с целью определить оптимальное число градиентных направлений для протоколов нейровизуализации, которые мы далее иллюстрируем анализом сканирования мозга живого человека по реальным данным.\",\"PeriodicalId\":132929,\"journal\":{\"name\":\"Teoriya Veroyatnostei i ee Primeneniya\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teoriya Veroyatnostei i ee Primeneniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/tvp5534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teoriya Veroyatnostei i ee Primeneniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/tvp5534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受神经成像应用的启发,我们正在考虑在高阶张力模型中建立一个全球最低限度的下限。具体来说,我们所描述的方法使我们能够获得一个全球最小限度的边界来评估o . carmichael和2015年第二作者工作中提出的积分曲线。实际工作的理论结果保证,用于追踪活人脑中复杂的纤维结构和基于高角度分辨率mri (HARDI)的数据的评估不仅在局部而且在全球都是最佳的。因此,全球渐近风险指数的最小边界将为整个图像区域的测量方法提供量子化不确定性。除了理论结果外,还进行了广泛的实证研究,以确定神经可视化协议中梯度方向的最佳数量,我们进一步通过分析活生生的人的大脑扫描来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global rate optimality of integral curve estimators in high order tensor models
Вдохновленные применениями в нейровизуализации, мы рассматриваем проблему установления глобальной минимаксной нижней границы в модели тензора высокого порядка. В частности, описываемая нами методология позволяет получить глобальную минимаксную границу для оценок интегральных кривых, предложенных в работе О. Кармайкла и второго автора 2015 г., при полупараметрической постановке задачи. Теоретические результаты настоящей работы гарантируют, что оценки, используемые для отслеживания сложной структуры волокон внутри живого человеческого мозга и построенные по данным, полученным из диффузионной тензорной МРТ с высоким угловым разрешением (HARDI), оптимальны не только локально, но и глобально. Таким образом, глобальная минимаксная граница асимптотического риска оценок предоставит квантификацию неопределенности для метода оценки во всей области изображения. В дополнение к теоретическим результатам проводится подробное эмпирическое исследование с целью определить оптимальное число градиентных направлений для протоколов нейровизуализации, которые мы далее иллюстрируем анализом сканирования мозга живого человека по реальным данным.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信