C. Banerjee, Людмила Александровна Саханенко, L. Sakhanenko, David C. Zhu
{"title":"高阶张量模型中积分曲线估计的全局速率最优性","authors":"C. Banerjee, Людмила Александровна Саханенко, L. Sakhanenko, David C. Zhu","doi":"10.4213/tvp5534","DOIUrl":null,"url":null,"abstract":"Вдохновленные применениями в нейровизуализации, мы рассматриваем проблему установления глобальной минимаксной нижней границы в модели тензора высокого порядка. В частности, описываемая нами методология позволяет получить глобальную минимаксную границу для оценок интегральных кривых, предложенных в работе О. Кармайкла и второго автора 2015 г., при полупараметрической постановке задачи. Теоретические результаты настоящей работы гарантируют, что оценки, используемые для отслеживания сложной структуры волокон внутри живого человеческого мозга и построенные по данным, полученным из диффузионной тензорной МРТ с высоким угловым разрешением (HARDI), оптимальны не только локально, но и глобально. Таким образом, глобальная минимаксная граница асимптотического риска оценок предоставит квантификацию неопределенности для метода оценки во всей области изображения. В дополнение к теоретическим результатам проводится подробное эмпирическое исследование с целью определить оптимальное число градиентных направлений для протоколов нейровизуализации, которые мы далее иллюстрируем анализом сканирования мозга живого человека по реальным данным.","PeriodicalId":132929,"journal":{"name":"Teoriya Veroyatnostei i ee Primeneniya","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global rate optimality of integral curve estimators in high order tensor models\",\"authors\":\"C. Banerjee, Людмила Александровна Саханенко, L. Sakhanenko, David C. Zhu\",\"doi\":\"10.4213/tvp5534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Вдохновленные применениями в нейровизуализации, мы рассматриваем проблему установления глобальной минимаксной нижней границы в модели тензора высокого порядка. В частности, описываемая нами методология позволяет получить глобальную минимаксную границу для оценок интегральных кривых, предложенных в работе О. Кармайкла и второго автора 2015 г., при полупараметрической постановке задачи. Теоретические результаты настоящей работы гарантируют, что оценки, используемые для отслеживания сложной структуры волокон внутри живого человеческого мозга и построенные по данным, полученным из диффузионной тензорной МРТ с высоким угловым разрешением (HARDI), оптимальны не только локально, но и глобально. Таким образом, глобальная минимаксная граница асимптотического риска оценок предоставит квантификацию неопределенности для метода оценки во всей области изображения. В дополнение к теоретическим результатам проводится подробное эмпирическое исследование с целью определить оптимальное число градиентных направлений для протоколов нейровизуализации, которые мы далее иллюстрируем анализом сканирования мозга живого человека по реальным данным.\",\"PeriodicalId\":132929,\"journal\":{\"name\":\"Teoriya Veroyatnostei i ee Primeneniya\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teoriya Veroyatnostei i ee Primeneniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/tvp5534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teoriya Veroyatnostei i ee Primeneniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/tvp5534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global rate optimality of integral curve estimators in high order tensor models
Вдохновленные применениями в нейровизуализации, мы рассматриваем проблему установления глобальной минимаксной нижней границы в модели тензора высокого порядка. В частности, описываемая нами методология позволяет получить глобальную минимаксную границу для оценок интегральных кривых, предложенных в работе О. Кармайкла и второго автора 2015 г., при полупараметрической постановке задачи. Теоретические результаты настоящей работы гарантируют, что оценки, используемые для отслеживания сложной структуры волокон внутри живого человеческого мозга и построенные по данным, полученным из диффузионной тензорной МРТ с высоким угловым разрешением (HARDI), оптимальны не только локально, но и глобально. Таким образом, глобальная минимаксная граница асимптотического риска оценок предоставит квантификацию неопределенности для метода оценки во всей области изображения. В дополнение к теоретическим результатам проводится подробное эмпирическое исследование с целью определить оптимальное число градиентных направлений для протоколов нейровизуализации, которые мы далее иллюстрируем анализом сканирования мозга живого человека по реальным данным.