{"title":"LoCaF:用糟糕的无线摄像头探测现实世界的状态","authors":"Benjamin Meyer, Richard Mietz, K. Römer","doi":"10.1109/DCOSS.2012.9","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) integrates wireless sensors to provide online and real-time access to the state of things and places. However, many interesting real-world states are difficult to detect with traditional scalar sensors. Tiny wireless camera sensor nodes are an interesting alternative as a single camera can observe a large area in great detail. However, low image resolution, poor image quality, and low frame rates as well as varying lighting conditions in outdoor scenarios make the detection of real-world states using these lousy cameras a challenging problem. In this paper we introduce a framework that addresses this problem by providing an end-to-end solution that includes energy-efficient image capture, image enhancement to mitigate low picture quality, object detection with low frame rates, inference of high-level states, and publishing of these states on the IoT. The framework can be flexibly configured by end-users without programming skills and supports a variety of different applications.","PeriodicalId":448418,"journal":{"name":"2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"LoCaF: Detecting Real-World States with Lousy Wireless Cameras\",\"authors\":\"Benjamin Meyer, Richard Mietz, K. Römer\",\"doi\":\"10.1109/DCOSS.2012.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) integrates wireless sensors to provide online and real-time access to the state of things and places. However, many interesting real-world states are difficult to detect with traditional scalar sensors. Tiny wireless camera sensor nodes are an interesting alternative as a single camera can observe a large area in great detail. However, low image resolution, poor image quality, and low frame rates as well as varying lighting conditions in outdoor scenarios make the detection of real-world states using these lousy cameras a challenging problem. In this paper we introduce a framework that addresses this problem by providing an end-to-end solution that includes energy-efficient image capture, image enhancement to mitigate low picture quality, object detection with low frame rates, inference of high-level states, and publishing of these states on the IoT. The framework can be flexibly configured by end-users without programming skills and supports a variety of different applications.\",\"PeriodicalId\":448418,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCOSS.2012.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on Distributed Computing in Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS.2012.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LoCaF: Detecting Real-World States with Lousy Wireless Cameras
The Internet of Things (IoT) integrates wireless sensors to provide online and real-time access to the state of things and places. However, many interesting real-world states are difficult to detect with traditional scalar sensors. Tiny wireless camera sensor nodes are an interesting alternative as a single camera can observe a large area in great detail. However, low image resolution, poor image quality, and low frame rates as well as varying lighting conditions in outdoor scenarios make the detection of real-world states using these lousy cameras a challenging problem. In this paper we introduce a framework that addresses this problem by providing an end-to-end solution that includes energy-efficient image capture, image enhancement to mitigate low picture quality, object detection with low frame rates, inference of high-level states, and publishing of these states on the IoT. The framework can be flexibly configured by end-users without programming skills and supports a variety of different applications.