压力控制环境下小型四轴飞行器的壁效应评价

Iris David Du Mutel de Pierrepont Franzetti, R. Parin, E. Capello
{"title":"压力控制环境下小型四轴飞行器的壁效应评价","authors":"Iris David Du Mutel de Pierrepont Franzetti, R. Parin, E. Capello","doi":"10.1109/ICUAS57906.2023.10156365","DOIUrl":null,"url":null,"abstract":"Multicopters are used for a wide range of applications that often involve approaching buildings or navigating enclosed spaces. Opposed to the freedom found in outdoor flights, indoor UAVs navigating close to surfaces must take into account the airflow variations caused by its rebound and identify them as disturbances to be compensated. A custom made quadcopter has been built for the evaluation of wall effect in climate controlled environments. Two different propeller sizes have been considered for testing.Climate variations consisting in changes of pressure, from 1000 mbar up to the equivalent pressure attained at 5000 m. A fixed 6DOF load cell has been used for the experiments, being able to log forces and moments in three orthogonal axes. The tests simulate a hovering UAV at different wall distances. The influence of the propeller size and air density on the wall effect has been also measured. Experimental data will be used for the definition of a mathematical model, in which the wall effect is considered.","PeriodicalId":379073,"journal":{"name":"2023 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wall Effect evaluation of small quadcopters in pressure-controlled environments\",\"authors\":\"Iris David Du Mutel de Pierrepont Franzetti, R. Parin, E. Capello\",\"doi\":\"10.1109/ICUAS57906.2023.10156365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multicopters are used for a wide range of applications that often involve approaching buildings or navigating enclosed spaces. Opposed to the freedom found in outdoor flights, indoor UAVs navigating close to surfaces must take into account the airflow variations caused by its rebound and identify them as disturbances to be compensated. A custom made quadcopter has been built for the evaluation of wall effect in climate controlled environments. Two different propeller sizes have been considered for testing.Climate variations consisting in changes of pressure, from 1000 mbar up to the equivalent pressure attained at 5000 m. A fixed 6DOF load cell has been used for the experiments, being able to log forces and moments in three orthogonal axes. The tests simulate a hovering UAV at different wall distances. The influence of the propeller size and air density on the wall effect has been also measured. Experimental data will be used for the definition of a mathematical model, in which the wall effect is considered.\",\"PeriodicalId\":379073,\"journal\":{\"name\":\"2023 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUAS57906.2023.10156365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS57906.2023.10156365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多旋翼直升机的应用范围很广,通常涉及接近建筑物或在封闭空间航行。与室外飞行的自由不同,室内无人机在靠近地面的地方航行时,必须考虑到由其反弹引起的气流变化,并将其识别为需要补偿的干扰。为研究气候控制环境下的壁面效应,研制了一种定制的四轴飞行器。已经考虑了两种不同尺寸的螺旋桨进行测试。由压力变化构成的气候变化,从1000毫巴到5000米处达到的等效压力。实验中使用了一个固定的6DOF称重传感器,能够记录三个正交轴上的力和力矩。该试验模拟了一架悬停在不同壁距上的无人机。还测量了螺旋桨尺寸和空气密度对壁面效应的影响。实验数据将用于定义考虑壁面效应的数学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wall Effect evaluation of small quadcopters in pressure-controlled environments
Multicopters are used for a wide range of applications that often involve approaching buildings or navigating enclosed spaces. Opposed to the freedom found in outdoor flights, indoor UAVs navigating close to surfaces must take into account the airflow variations caused by its rebound and identify them as disturbances to be compensated. A custom made quadcopter has been built for the evaluation of wall effect in climate controlled environments. Two different propeller sizes have been considered for testing.Climate variations consisting in changes of pressure, from 1000 mbar up to the equivalent pressure attained at 5000 m. A fixed 6DOF load cell has been used for the experiments, being able to log forces and moments in three orthogonal axes. The tests simulate a hovering UAV at different wall distances. The influence of the propeller size and air density on the wall effect has been also measured. Experimental data will be used for the definition of a mathematical model, in which the wall effect is considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信