T. Matsuzaki, T. Onuki, S. Nagatsuka, H. Inoue, T. Ishizu, Y. Ieda, Naoto Yamade, H. Miyairi, M. Sakakura, T. Atsumi, Y. Shionoiri, K. Kato, T. Okuda, Yoshitaka Yamamoto, Masahiro Fujita, J. Koyama, S. Yamazaki
{"title":"16.9 A 128kb 4b/cell非易失性存储器,晶体In-Ga-Zn氧化物场效应晶体管采用Vt,取消写入方法","authors":"T. Matsuzaki, T. Onuki, S. Nagatsuka, H. Inoue, T. Ishizu, Y. Ieda, Naoto Yamade, H. Miyairi, M. Sakakura, T. Atsumi, Y. Shionoiri, K. Kato, T. Okuda, Yoshitaka Yamamoto, Masahiro Fujita, J. Koyama, S. Yamazaki","doi":"10.1109/ISSCC.2015.7063048","DOIUrl":null,"url":null,"abstract":"As the number of devices connected to the Internet increases, servers and mobile devices must process increasingly large volumes of data, and also accommodate the increasing demand for high-speed and large-capacity working memory keeping the power consumption low. This need is being fulfilled by emerging devices, such as resistive RAM, phase-change RAM, and MRAM [1], which realize high-speed, high-density and nonvolatile memory, significantly enhancing the performance of CPUs with integrated memories.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"16.9 A 128kb 4b/cell nonvolatile memory with crystalline In-Ga-Zn oxide FET using Vt, cancel write method\",\"authors\":\"T. Matsuzaki, T. Onuki, S. Nagatsuka, H. Inoue, T. Ishizu, Y. Ieda, Naoto Yamade, H. Miyairi, M. Sakakura, T. Atsumi, Y. Shionoiri, K. Kato, T. Okuda, Yoshitaka Yamamoto, Masahiro Fujita, J. Koyama, S. Yamazaki\",\"doi\":\"10.1109/ISSCC.2015.7063048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the number of devices connected to the Internet increases, servers and mobile devices must process increasingly large volumes of data, and also accommodate the increasing demand for high-speed and large-capacity working memory keeping the power consumption low. This need is being fulfilled by emerging devices, such as resistive RAM, phase-change RAM, and MRAM [1], which realize high-speed, high-density and nonvolatile memory, significantly enhancing the performance of CPUs with integrated memories.\",\"PeriodicalId\":188403,\"journal\":{\"name\":\"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2015.7063048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7063048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
16.9 A 128kb 4b/cell nonvolatile memory with crystalline In-Ga-Zn oxide FET using Vt, cancel write method
As the number of devices connected to the Internet increases, servers and mobile devices must process increasingly large volumes of data, and also accommodate the increasing demand for high-speed and large-capacity working memory keeping the power consumption low. This need is being fulfilled by emerging devices, such as resistive RAM, phase-change RAM, and MRAM [1], which realize high-speed, high-density and nonvolatile memory, significantly enhancing the performance of CPUs with integrated memories.