{"title":"考虑结构元件接触相互作用的真空开关装置电磁铁和执行器过程的多物理场模型","authors":"Mykhailo Panteliat, A. Kuzmin","doi":"10.20998/2079-3944.2021.2.03","DOIUrl":null,"url":null,"abstract":"The purpose of the work is to improve mathematical models and algorithms of computer modeling of multiphysics processes in electromagnets and actuators of vacuum switching devices by taking into account the contact interaction of structural elements when changing their stress-strain state. In the design of modern vacuum circuit breakers and contactors, there is a significant use of electromagnetic actuators based on high-coercive hard magnetic rare earth composite materials NdFeB and SmCo. The most promising for use as drives of circuit breakers and contactors are polarized electromagnets based on the use of these high-coercive permanent magnets. However, the existing serial designs of electromagnets and actuators need to be significantly improved in order to increase reliability and service life, reduce weight and cost, further reduce energy consumption, improve the manufacturability of the mass production process. Computer simulation is proposed to be performed by the Finite Element Method in 2D formulation using commercial software products and/or software created directly for these investigations. One of the priority areas for improving mathematical models and algorithms for computer modeling of processes in the mechanical circuit of vacuum switching devices of medium and high voltage is to take into account the contact interaction of the structural elements of the devices under consideration. The next step, thanks to the use of an advanced mathematical model, is to perform a set of computational research and based on the obtained numerical results to develop recommendations aimed at creating designs of electromagnets and actuators that would meet world standards and be competitive in the world market.","PeriodicalId":385206,"journal":{"name":"Bulletin of NTU \"KhPI\". Series: Problems of Electrical Machines and Apparatus Perfection. The Theory and Practice","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiphysics model of processes in electromagnets and actuators of vacuum switching devices taking into ac-count contact interaction of structural elements\",\"authors\":\"Mykhailo Panteliat, A. Kuzmin\",\"doi\":\"10.20998/2079-3944.2021.2.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the work is to improve mathematical models and algorithms of computer modeling of multiphysics processes in electromagnets and actuators of vacuum switching devices by taking into account the contact interaction of structural elements when changing their stress-strain state. In the design of modern vacuum circuit breakers and contactors, there is a significant use of electromagnetic actuators based on high-coercive hard magnetic rare earth composite materials NdFeB and SmCo. The most promising for use as drives of circuit breakers and contactors are polarized electromagnets based on the use of these high-coercive permanent magnets. However, the existing serial designs of electromagnets and actuators need to be significantly improved in order to increase reliability and service life, reduce weight and cost, further reduce energy consumption, improve the manufacturability of the mass production process. Computer simulation is proposed to be performed by the Finite Element Method in 2D formulation using commercial software products and/or software created directly for these investigations. One of the priority areas for improving mathematical models and algorithms for computer modeling of processes in the mechanical circuit of vacuum switching devices of medium and high voltage is to take into account the contact interaction of the structural elements of the devices under consideration. The next step, thanks to the use of an advanced mathematical model, is to perform a set of computational research and based on the obtained numerical results to develop recommendations aimed at creating designs of electromagnets and actuators that would meet world standards and be competitive in the world market.\",\"PeriodicalId\":385206,\"journal\":{\"name\":\"Bulletin of NTU \\\"KhPI\\\". Series: Problems of Electrical Machines and Apparatus Perfection. The Theory and Practice\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of NTU \\\"KhPI\\\". Series: Problems of Electrical Machines and Apparatus Perfection. The Theory and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2079-3944.2021.2.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of NTU \"KhPI\". Series: Problems of Electrical Machines and Apparatus Perfection. The Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2079-3944.2021.2.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multiphysics model of processes in electromagnets and actuators of vacuum switching devices taking into ac-count contact interaction of structural elements
The purpose of the work is to improve mathematical models and algorithms of computer modeling of multiphysics processes in electromagnets and actuators of vacuum switching devices by taking into account the contact interaction of structural elements when changing their stress-strain state. In the design of modern vacuum circuit breakers and contactors, there is a significant use of electromagnetic actuators based on high-coercive hard magnetic rare earth composite materials NdFeB and SmCo. The most promising for use as drives of circuit breakers and contactors are polarized electromagnets based on the use of these high-coercive permanent magnets. However, the existing serial designs of electromagnets and actuators need to be significantly improved in order to increase reliability and service life, reduce weight and cost, further reduce energy consumption, improve the manufacturability of the mass production process. Computer simulation is proposed to be performed by the Finite Element Method in 2D formulation using commercial software products and/or software created directly for these investigations. One of the priority areas for improving mathematical models and algorithms for computer modeling of processes in the mechanical circuit of vacuum switching devices of medium and high voltage is to take into account the contact interaction of the structural elements of the devices under consideration. The next step, thanks to the use of an advanced mathematical model, is to perform a set of computational research and based on the obtained numerical results to develop recommendations aimed at creating designs of electromagnets and actuators that would meet world standards and be competitive in the world market.