探索使用司机属性来表征自然驾驶行为的异质性

Rachel James, Britton Hammit, Mohamed M. Ahmed
{"title":"探索使用司机属性来表征自然驾驶行为的异质性","authors":"Rachel James, Britton Hammit, Mohamed M. Ahmed","doi":"10.1109/ITSC.2018.8569497","DOIUrl":null,"url":null,"abstract":"Microsimulation models are powerful tools for exploring the impact of human driving behavior on the transportation system. One of the most heavily researched components of microsimulation models are car-following models, where human behavior is approximated using driver specific calibration coefficients. Inter-driver heterogeneity in calibration parameters has been observed in naturalistic data, but few studies have explored methods to characterize this heterogeneity. This research utilizes an 85-driver sample from the second Strategic Highway Research Program Naturalistic Driving Study dataset to calibrate over 100-hours of car-following data to three different car-following models: Gipps, Wiedemann 99, and Intelligent Driver Model. This enables a detailed exploration of the degree to which driver attributes—such as age, gender, and income—can be leveraged to account for inter-driver heterogeneity in car-following. The sample is segmented into smaller subsamples of data as a function of driver attributes. Statistically significant differences in parameter values are observed between the subsamples of data when age, miles driven last year, and income are used as characterizing traits. Moreover, it is shown that no single model outperforms the other models for all categories of data.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploring the Use of Driver Attributes to Characterize Heterogeneity in Naturalistic Driving Behavior\",\"authors\":\"Rachel James, Britton Hammit, Mohamed M. Ahmed\",\"doi\":\"10.1109/ITSC.2018.8569497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microsimulation models are powerful tools for exploring the impact of human driving behavior on the transportation system. One of the most heavily researched components of microsimulation models are car-following models, where human behavior is approximated using driver specific calibration coefficients. Inter-driver heterogeneity in calibration parameters has been observed in naturalistic data, but few studies have explored methods to characterize this heterogeneity. This research utilizes an 85-driver sample from the second Strategic Highway Research Program Naturalistic Driving Study dataset to calibrate over 100-hours of car-following data to three different car-following models: Gipps, Wiedemann 99, and Intelligent Driver Model. This enables a detailed exploration of the degree to which driver attributes—such as age, gender, and income—can be leveraged to account for inter-driver heterogeneity in car-following. The sample is segmented into smaller subsamples of data as a function of driver attributes. Statistically significant differences in parameter values are observed between the subsamples of data when age, miles driven last year, and income are used as characterizing traits. Moreover, it is shown that no single model outperforms the other models for all categories of data.\",\"PeriodicalId\":395239,\"journal\":{\"name\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2018.8569497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

微仿真模型是探索人类驾驶行为对交通系统影响的有力工具。微模拟模型中研究最多的部分之一是汽车跟随模型,其中人类行为使用驾驶员特定的校准系数来近似。在自然数据中已经观察到校准参数的驱动间异质性,但很少有研究探索表征这种异质性的方法。本研究利用来自第二个战略公路研究计划自然驾驶研究数据集的85名驾驶员样本,将超过100小时的汽车跟随数据校准为三种不同的汽车跟随模型:Gipps, Wiedemann 99和智能驾驶员模型。这使得详细探索驾驶员属性(如年龄、性别和收入)在多大程度上可以被用来解释车辆跟踪过程中驾驶员之间的异质性。作为驱动程序属性的函数,样本被分割成更小的数据子样本。当使用年龄、去年行驶里程和收入作为特征特征时,数据子样本之间的参数值存在统计学上的显著差异。此外,它表明,没有一个单一的模型优于其他模型的所有类别的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Use of Driver Attributes to Characterize Heterogeneity in Naturalistic Driving Behavior
Microsimulation models are powerful tools for exploring the impact of human driving behavior on the transportation system. One of the most heavily researched components of microsimulation models are car-following models, where human behavior is approximated using driver specific calibration coefficients. Inter-driver heterogeneity in calibration parameters has been observed in naturalistic data, but few studies have explored methods to characterize this heterogeneity. This research utilizes an 85-driver sample from the second Strategic Highway Research Program Naturalistic Driving Study dataset to calibrate over 100-hours of car-following data to three different car-following models: Gipps, Wiedemann 99, and Intelligent Driver Model. This enables a detailed exploration of the degree to which driver attributes—such as age, gender, and income—can be leveraged to account for inter-driver heterogeneity in car-following. The sample is segmented into smaller subsamples of data as a function of driver attributes. Statistically significant differences in parameter values are observed between the subsamples of data when age, miles driven last year, and income are used as characterizing traits. Moreover, it is shown that no single model outperforms the other models for all categories of data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信