利用词对分布不对称改进词表示

Chuan Tian, Wenge Rong, Y. Ouyang, Zhang Xiong
{"title":"利用词对分布不对称改进词表示","authors":"Chuan Tian, Wenge Rong, Y. Ouyang, Zhang Xiong","doi":"10.1109/CYBERC.2018.00024","DOIUrl":null,"url":null,"abstract":"Distributed word representation has demonstrated impressive improvements on numerous natural language processing applications. However, most existing word representation learning methods rarely consider use of word order information, and lead to confusion of similarity and relevance. Targeting on this problem we propose a general learning approach DAV (Distributional Asymmetry Vector) to build better word representation by utilizing word pair distributional asymmetry, which contains word order information. Experimental study on two large benchmarks with several state-of-art word representation learning models has shown the potential of the proposed method.","PeriodicalId":282903,"journal":{"name":"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving Word Representation with Word Pair Distributional Asymmetry\",\"authors\":\"Chuan Tian, Wenge Rong, Y. Ouyang, Zhang Xiong\",\"doi\":\"10.1109/CYBERC.2018.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed word representation has demonstrated impressive improvements on numerous natural language processing applications. However, most existing word representation learning methods rarely consider use of word order information, and lead to confusion of similarity and relevance. Targeting on this problem we propose a general learning approach DAV (Distributional Asymmetry Vector) to build better word representation by utilizing word pair distributional asymmetry, which contains word order information. Experimental study on two large benchmarks with several state-of-art word representation learning models has shown the potential of the proposed method.\",\"PeriodicalId\":282903,\"journal\":{\"name\":\"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERC.2018.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2018.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

分布式单词表示已经在许多自然语言处理应用程序上展示了令人印象深刻的改进。然而,现有的大多数词语表示学习方法很少考虑词序信息的使用,导致相似度和相关性的混淆。针对这一问题,我们提出了一种通用的学习方法DAV (Distributional asymmetric Vector),利用包含词序信息的词对分布不对称来构建更好的词表示。在两个大型基准测试和几个最先进的词表示学习模型上的实验研究表明了该方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Word Representation with Word Pair Distributional Asymmetry
Distributed word representation has demonstrated impressive improvements on numerous natural language processing applications. However, most existing word representation learning methods rarely consider use of word order information, and lead to confusion of similarity and relevance. Targeting on this problem we propose a general learning approach DAV (Distributional Asymmetry Vector) to build better word representation by utilizing word pair distributional asymmetry, which contains word order information. Experimental study on two large benchmarks with several state-of-art word representation learning models has shown the potential of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信