用于高分辨率可见光图像的光电和红外信号多传感器融合:第二部分

Xiaopeng Huang, R. Netravali, H. Man, V. Lawrence
{"title":"用于高分辨率可见光图像的光电和红外信号多传感器融合:第二部分","authors":"Xiaopeng Huang, R. Netravali, H. Man, V. Lawrence","doi":"10.1109/OCEANS.2012.6405013","DOIUrl":null,"url":null,"abstract":"Electro-Optic (EO) image sensors exhibit the properties of high resolution and low noise level, but they cannot reflect information about the temperature of objects and do not work in dark environments. On the other hand, infrared (IR) image sensors exhibit the properties of low resolution and high noise level, but IR images can reflect information about the temperature of objects all the time. Therefore, in this paper, we propose a novel framework to enhance the resolution of EO images using the information (e.g., temperature) from IR images, which helps distinguish temperature variation of objects in the daytime via high-resolution EO images. The proposed novel framework involves four main steps: (1) select target objects with temperature variation in original IR images; (2) fuse original RGB color (EO) images and IR images based on image fusion algorithms; (3) blend the fused images of target objects in proportion with original gray-scale EO images; (4) superimpose the target objects' temperature information onto original EO images via the modified NTSC color space transformation. Therein, the image fusion step will be conducted by the quantitative (Yang et al. proposed adaptive multi-sensor fusion algorithm) approach in this part. Revealing temperature information in EO images for the first time is the most significant contribution of this paper. Simulation results will show the transformed EO images with the targets' temperature information.","PeriodicalId":434023,"journal":{"name":"2012 Oceans","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-sensor fusion of Electro-Optic and infrared signals for high resolution visible images: Part II\",\"authors\":\"Xiaopeng Huang, R. Netravali, H. Man, V. Lawrence\",\"doi\":\"10.1109/OCEANS.2012.6405013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electro-Optic (EO) image sensors exhibit the properties of high resolution and low noise level, but they cannot reflect information about the temperature of objects and do not work in dark environments. On the other hand, infrared (IR) image sensors exhibit the properties of low resolution and high noise level, but IR images can reflect information about the temperature of objects all the time. Therefore, in this paper, we propose a novel framework to enhance the resolution of EO images using the information (e.g., temperature) from IR images, which helps distinguish temperature variation of objects in the daytime via high-resolution EO images. The proposed novel framework involves four main steps: (1) select target objects with temperature variation in original IR images; (2) fuse original RGB color (EO) images and IR images based on image fusion algorithms; (3) blend the fused images of target objects in proportion with original gray-scale EO images; (4) superimpose the target objects' temperature information onto original EO images via the modified NTSC color space transformation. Therein, the image fusion step will be conducted by the quantitative (Yang et al. proposed adaptive multi-sensor fusion algorithm) approach in this part. Revealing temperature information in EO images for the first time is the most significant contribution of this paper. Simulation results will show the transformed EO images with the targets' temperature information.\",\"PeriodicalId\":434023,\"journal\":{\"name\":\"2012 Oceans\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Oceans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2012.6405013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2012.6405013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电光图像传感器具有高分辨率和低噪声的特点,但不能反映物体的温度信息,不能在黑暗环境中工作。另一方面,红外图像传感器具有分辨率低、噪声高的特点,但红外图像可以随时反映物体的温度信息。因此,在本文中,我们提出了一个新的框架,利用红外图像的信息(如温度)来提高EO图像的分辨率,这有助于通过高分辨率EO图像区分白天物体的温度变化。该框架包括四个主要步骤:(1)在原始红外图像中选择温度变化的目标;(2)基于图像融合算法对原始RGB彩色(EO)图像与红外图像进行融合;(3)将融合后的目标物体图像与原始灰度EO图像按比例混合;(4)通过改进的NTSC色彩空间变换,将目标物体的温度信息叠加到原始EO图像上。其中,图像融合步骤将采用本部分定量的(Yang等人提出的自适应多传感器融合算法)方法进行。本文最大的贡献是首次揭示了EO图像中的温度信息。仿真结果显示变换后的EO图像中包含目标的温度信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-sensor fusion of Electro-Optic and infrared signals for high resolution visible images: Part II
Electro-Optic (EO) image sensors exhibit the properties of high resolution and low noise level, but they cannot reflect information about the temperature of objects and do not work in dark environments. On the other hand, infrared (IR) image sensors exhibit the properties of low resolution and high noise level, but IR images can reflect information about the temperature of objects all the time. Therefore, in this paper, we propose a novel framework to enhance the resolution of EO images using the information (e.g., temperature) from IR images, which helps distinguish temperature variation of objects in the daytime via high-resolution EO images. The proposed novel framework involves four main steps: (1) select target objects with temperature variation in original IR images; (2) fuse original RGB color (EO) images and IR images based on image fusion algorithms; (3) blend the fused images of target objects in proportion with original gray-scale EO images; (4) superimpose the target objects' temperature information onto original EO images via the modified NTSC color space transformation. Therein, the image fusion step will be conducted by the quantitative (Yang et al. proposed adaptive multi-sensor fusion algorithm) approach in this part. Revealing temperature information in EO images for the first time is the most significant contribution of this paper. Simulation results will show the transformed EO images with the targets' temperature information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信