更快的OMP计算通过传感矩阵列减少

F. C. Akyon, Gokhan Gok, Y. K. Alp
{"title":"更快的OMP计算通过传感矩阵列减少","authors":"F. C. Akyon, Gokhan Gok, Y. K. Alp","doi":"10.1109/SIU.2017.7960585","DOIUrl":null,"url":null,"abstract":"Compressed sensing is an emerging technique that allows to reconstruct sparse signals sampled at sub-Nyquist rates. However, it requires high computational effort to reconstruct the compressively sampled signal, which makes real-time application of it very hard. We therefore, present a novel, generic method that decreases the computational complexity of Orthogonal Matehing Pursuit (OMP) like reconstruction algorithms that exploit the correlation of columns of a dictionary (sensing matrix). The proposed method reduces the column number of the dictionary in a systematic manner to speed up the correlation calculations. Simulation results show that in sparse scenarios, reconstruction speed increases significantiy with a negligible decrease in the reconstruction accuracy.","PeriodicalId":409299,"journal":{"name":"Signal Processing and Communications Applications Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faster OMP computations by sensing matrix column reduction\",\"authors\":\"F. C. Akyon, Gokhan Gok, Y. K. Alp\",\"doi\":\"10.1109/SIU.2017.7960585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing is an emerging technique that allows to reconstruct sparse signals sampled at sub-Nyquist rates. However, it requires high computational effort to reconstruct the compressively sampled signal, which makes real-time application of it very hard. We therefore, present a novel, generic method that decreases the computational complexity of Orthogonal Matehing Pursuit (OMP) like reconstruction algorithms that exploit the correlation of columns of a dictionary (sensing matrix). The proposed method reduces the column number of the dictionary in a systematic manner to speed up the correlation calculations. Simulation results show that in sparse scenarios, reconstruction speed increases significantiy with a negligible decrease in the reconstruction accuracy.\",\"PeriodicalId\":409299,\"journal\":{\"name\":\"Signal Processing and Communications Applications Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2017.7960585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

压缩感知是一种新兴的技术,它允许以亚奈奎斯特速率重建稀疏信号。但是,对压缩采样信号进行重构需要大量的计算量,这给实时应用带来了很大的困难。因此,我们提出了一种新颖的通用方法,可以降低正交匹配追踪(OMP)的计算复杂度,例如利用字典(感知矩阵)列之间的相关性的重建算法。该方法系统地减少了字典的列数,加快了相关计算的速度。仿真结果表明,在稀疏场景下,重构速度显著提高,而重构精度的降低可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faster OMP computations by sensing matrix column reduction
Compressed sensing is an emerging technique that allows to reconstruct sparse signals sampled at sub-Nyquist rates. However, it requires high computational effort to reconstruct the compressively sampled signal, which makes real-time application of it very hard. We therefore, present a novel, generic method that decreases the computational complexity of Orthogonal Matehing Pursuit (OMP) like reconstruction algorithms that exploit the correlation of columns of a dictionary (sensing matrix). The proposed method reduces the column number of the dictionary in a systematic manner to speed up the correlation calculations. Simulation results show that in sparse scenarios, reconstruction speed increases significantiy with a negligible decrease in the reconstruction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信