形态学图像处理与斑点分析在红细胞分割与计数中的应用

Jennifer C. Dela Cruz, J. Lazaro
{"title":"形态学图像处理与斑点分析在红细胞分割与计数中的应用","authors":"Jennifer C. Dela Cruz, J. Lazaro","doi":"10.1109/HNICEM.2018.8666354","DOIUrl":null,"url":null,"abstract":"this paper presents a proposed procedure using a morphological image processing on a 960x720 pixels blood sample image. The principles of hemocytometer counting method were also performed to count and compare the output readings from the laboratory results. The red blood corpuscles (RBC) count is one of the essential elements that medical practitioners used for medical diagnosis of patients. Because of the morphological features of the RBC on the image file, different approach yields in the processing including image enhancement to reveal certain features such as edges and contours in the RBC. The concavity in the RBC was useful in the blob analysis with the watershed algorithm that leads to the segmentation of overlapping cells in clusters. The proposed procedure gives 96.042% accuracy for female test subject and 95.559% on the male test subject using two trials each with ten samples on each trial. The proposed procedure is successful by getting a results compared to the manual count performed in the laboratory. The use of the application program created using MatLab for blob analysis yield a good results in recognizing red cells and for counting each segmented cells.","PeriodicalId":426103,"journal":{"name":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Morphological Image Processing and Blob Analysis for Red Blood Corpuscles Segmentation and Counting\",\"authors\":\"Jennifer C. Dela Cruz, J. Lazaro\",\"doi\":\"10.1109/HNICEM.2018.8666354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"this paper presents a proposed procedure using a morphological image processing on a 960x720 pixels blood sample image. The principles of hemocytometer counting method were also performed to count and compare the output readings from the laboratory results. The red blood corpuscles (RBC) count is one of the essential elements that medical practitioners used for medical diagnosis of patients. Because of the morphological features of the RBC on the image file, different approach yields in the processing including image enhancement to reveal certain features such as edges and contours in the RBC. The concavity in the RBC was useful in the blob analysis with the watershed algorithm that leads to the segmentation of overlapping cells in clusters. The proposed procedure gives 96.042% accuracy for female test subject and 95.559% on the male test subject using two trials each with ten samples on each trial. The proposed procedure is successful by getting a results compared to the manual count performed in the laboratory. The use of the application program created using MatLab for blob analysis yield a good results in recognizing red cells and for counting each segmented cells.\",\"PeriodicalId\":426103,\"journal\":{\"name\":\"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM.2018.8666354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2018.8666354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种对960x720像素的血液样本图像进行形态学图像处理的方法。还执行了血细胞计计数法的原理,以计数和比较实验室结果的输出读数。红细胞计数是医生对患者进行医学诊断的重要指标之一。由于图像文件上红细胞的形态学特征,在处理中产生不同的方法,包括图像增强以显示红细胞的某些特征,如边缘和轮廓。RBC的凹度在分水岭算法的blob分析中是有用的,该算法导致簇中重叠细胞的分割。该方法对女性受试者的准确率为96.042%,对男性受试者的准确率为95.559%,使用两次试验,每次试验10个样本。与实验室中进行的人工计数相比,所提出的程序是成功的。利用MatLab编写的应用程序进行blob分析,在识别红细胞和对每个分割细胞进行计数方面取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological Image Processing and Blob Analysis for Red Blood Corpuscles Segmentation and Counting
this paper presents a proposed procedure using a morphological image processing on a 960x720 pixels blood sample image. The principles of hemocytometer counting method were also performed to count and compare the output readings from the laboratory results. The red blood corpuscles (RBC) count is one of the essential elements that medical practitioners used for medical diagnosis of patients. Because of the morphological features of the RBC on the image file, different approach yields in the processing including image enhancement to reveal certain features such as edges and contours in the RBC. The concavity in the RBC was useful in the blob analysis with the watershed algorithm that leads to the segmentation of overlapping cells in clusters. The proposed procedure gives 96.042% accuracy for female test subject and 95.559% on the male test subject using two trials each with ten samples on each trial. The proposed procedure is successful by getting a results compared to the manual count performed in the laboratory. The use of the application program created using MatLab for blob analysis yield a good results in recognizing red cells and for counting each segmented cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信