{"title":"具有非线性和延迟型模板元素的细胞神经网络","authors":"T. Roska, L. Chua","doi":"10.1109/CNNA.1990.207503","DOIUrl":null,"url":null,"abstract":"The cellular neural network (CNN) paradigm is a powerful framework for analog nonlinear processing arrays placed on a regular grid. The authors extend the repertoire of CNN cloning template elements (atoms) by introducing additional nonlinear and delay-type characteristics. With this generalization, several well-known and powerful analog array-computing structures can be interpreted as special cases of the CNN. Moreover, it is shown that the CNN with these generalized cloning templates has a general programmable circuit structure with analog macros and algorithms. The relations with the cellular automaton and the systolic array are analysed. Finally, some robust stability results and the state-space structure of the dynamics are presented.<<ETX>>","PeriodicalId":142909,"journal":{"name":"IEEE International Workshop on Cellular Neural Networks and their Applications","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"214","resultStr":"{\"title\":\"Cellular neural networks with nonlinear and delay-type template elements\",\"authors\":\"T. Roska, L. Chua\",\"doi\":\"10.1109/CNNA.1990.207503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cellular neural network (CNN) paradigm is a powerful framework for analog nonlinear processing arrays placed on a regular grid. The authors extend the repertoire of CNN cloning template elements (atoms) by introducing additional nonlinear and delay-type characteristics. With this generalization, several well-known and powerful analog array-computing structures can be interpreted as special cases of the CNN. Moreover, it is shown that the CNN with these generalized cloning templates has a general programmable circuit structure with analog macros and algorithms. The relations with the cellular automaton and the systolic array are analysed. Finally, some robust stability results and the state-space structure of the dynamics are presented.<<ETX>>\",\"PeriodicalId\":142909,\"journal\":{\"name\":\"IEEE International Workshop on Cellular Neural Networks and their Applications\",\"volume\":\"279 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"214\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Workshop on Cellular Neural Networks and their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1990.207503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Cellular Neural Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1990.207503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cellular neural networks with nonlinear and delay-type template elements
The cellular neural network (CNN) paradigm is a powerful framework for analog nonlinear processing arrays placed on a regular grid. The authors extend the repertoire of CNN cloning template elements (atoms) by introducing additional nonlinear and delay-type characteristics. With this generalization, several well-known and powerful analog array-computing structures can be interpreted as special cases of the CNN. Moreover, it is shown that the CNN with these generalized cloning templates has a general programmable circuit structure with analog macros and algorithms. The relations with the cellular automaton and the systolic array are analysed. Finally, some robust stability results and the state-space structure of the dynamics are presented.<>