一种基于蚁群算法的SoC布局优化方法

Rong Luo, Peng Sun
{"title":"一种基于蚁群算法的SoC布局优化方法","authors":"Rong Luo, Peng Sun","doi":"10.1109/MWSCAS.2007.4488757","DOIUrl":null,"url":null,"abstract":"In this paper, we present an advanced placement which aims at both flattening the temperature and decreasing the area in SoC floorplanning. The placement process is ingeniously converted into a quasi TSP problem and is solved by ant colony optimization (ACO) algorithm. Compared to traditional algorithms based on O-tree and B*-tree optimization, our results show great improvement in calculating speed while promising satisfying accuracy.","PeriodicalId":256061,"journal":{"name":"2007 50th Midwest Symposium on Circuits and Systems","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An advanced placement method for SoC floorplanning based on ACO algorithm\",\"authors\":\"Rong Luo, Peng Sun\",\"doi\":\"10.1109/MWSCAS.2007.4488757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an advanced placement which aims at both flattening the temperature and decreasing the area in SoC floorplanning. The placement process is ingeniously converted into a quasi TSP problem and is solved by ant colony optimization (ACO) algorithm. Compared to traditional algorithms based on O-tree and B*-tree optimization, our results show great improvement in calculating speed while promising satisfying accuracy.\",\"PeriodicalId\":256061,\"journal\":{\"name\":\"2007 50th Midwest Symposium on Circuits and Systems\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 50th Midwest Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2007.4488757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 50th Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2007.4488757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种先进的安置方案,旨在降低SoC地板规划中的温度和面积。该方法将布局过程巧妙地转化为一个准TSP问题,并采用蚁群优化算法求解。与传统的基于o树和B*树优化的算法相比,我们的结果在保证令人满意的精度的同时,在计算速度上有了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An advanced placement method for SoC floorplanning based on ACO algorithm
In this paper, we present an advanced placement which aims at both flattening the temperature and decreasing the area in SoC floorplanning. The placement process is ingeniously converted into a quasi TSP problem and is solved by ant colony optimization (ACO) algorithm. Compared to traditional algorithms based on O-tree and B*-tree optimization, our results show great improvement in calculating speed while promising satisfying accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信