自动再现崩溃检测

Yongfeng Gu, J. Xuan, T. Qian
{"title":"自动再现崩溃检测","authors":"Yongfeng Gu, J. Xuan, T. Qian","doi":"10.1109/SATE.2016.15","DOIUrl":null,"url":null,"abstract":"Crash reproduction, which spends much time of developers in reading and understanding source code, is a crucial yet time-consuming task in program debugging. To reduce the time and resource cost, automatic techniques of test generation have been proposed. These techniques aim to automatically generate test cases to reproduce the scenario of a crashed project. Unfortunately, due to the lack of a detailed comprehension of the source code, a generated test case may fail in reproducing an expected crash. In this paper, we propose an automatic approach to reproducible bug detection. This approach predicts whether a crash is difficult to reproduce or not via training a classifier based on historical reproducible crash data. If a crash is difficult to reproduce, it is better to assign the crash to a developer, instead of using an automatic technique of test generation. Our work can help to prioritize crashes and to save the cost of developers. Preliminary experiments show that our approach effectively detects reproducible crashes via evaluating 45 crashes.","PeriodicalId":344531,"journal":{"name":"2016 International Conference on Software Analysis, Testing and Evolution (SATE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic Reproducible Crash Detection\",\"authors\":\"Yongfeng Gu, J. Xuan, T. Qian\",\"doi\":\"10.1109/SATE.2016.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crash reproduction, which spends much time of developers in reading and understanding source code, is a crucial yet time-consuming task in program debugging. To reduce the time and resource cost, automatic techniques of test generation have been proposed. These techniques aim to automatically generate test cases to reproduce the scenario of a crashed project. Unfortunately, due to the lack of a detailed comprehension of the source code, a generated test case may fail in reproducing an expected crash. In this paper, we propose an automatic approach to reproducible bug detection. This approach predicts whether a crash is difficult to reproduce or not via training a classifier based on historical reproducible crash data. If a crash is difficult to reproduce, it is better to assign the crash to a developer, instead of using an automatic technique of test generation. Our work can help to prioritize crashes and to save the cost of developers. Preliminary experiments show that our approach effectively detects reproducible crashes via evaluating 45 crashes.\",\"PeriodicalId\":344531,\"journal\":{\"name\":\"2016 International Conference on Software Analysis, Testing and Evolution (SATE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Software Analysis, Testing and Evolution (SATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SATE.2016.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Software Analysis, Testing and Evolution (SATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SATE.2016.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在程序调试中,崩溃再现是一项重要而耗时的任务,它花费了开发人员大量的时间来阅读和理解源代码。为了减少时间和资源成本,提出了测试自动生成技术。这些技术旨在自动生成测试用例,以重现崩溃项目的场景。不幸的是,由于缺乏对源代码的详细理解,生成的测试用例可能无法再现预期的崩溃。在本文中,我们提出了一种可重复的错误自动检测方法。这种方法通过训练基于历史可再现的崩溃数据的分类器来预测崩溃是否难以再现。如果崩溃难以重现,那么最好将崩溃分配给开发人员,而不是使用自动生成测试的技术。我们的工作可以帮助确定崩溃的优先级,并节省开发人员的成本。初步实验表明,我们的方法通过评估45次崩溃有效地检测可重复的崩溃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Reproducible Crash Detection
Crash reproduction, which spends much time of developers in reading and understanding source code, is a crucial yet time-consuming task in program debugging. To reduce the time and resource cost, automatic techniques of test generation have been proposed. These techniques aim to automatically generate test cases to reproduce the scenario of a crashed project. Unfortunately, due to the lack of a detailed comprehension of the source code, a generated test case may fail in reproducing an expected crash. In this paper, we propose an automatic approach to reproducible bug detection. This approach predicts whether a crash is difficult to reproduce or not via training a classifier based on historical reproducible crash data. If a crash is difficult to reproduce, it is better to assign the crash to a developer, instead of using an automatic technique of test generation. Our work can help to prioritize crashes and to save the cost of developers. Preliminary experiments show that our approach effectively detects reproducible crashes via evaluating 45 crashes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信