二次型Volterra ADF的分析与快速RLS算法

J. Chao
{"title":"二次型Volterra ADF的分析与快速RLS算法","authors":"J. Chao","doi":"10.1109/ICDSP.2002.1028199","DOIUrl":null,"url":null,"abstract":"It is shown that adaptive training of quadratic Volterra filters is an ill-conditioned problem, or the error surfaces of the adaptive filters (ADF) are always extremely steep in one particular direction but relatively flat in the rest of the directions. This result is a generalization of a previous report on the special case of when the inputs are delayed values of a single time series of Gaussian distribution. A complete analysis of the correlation matrix of inputs as multiple time series are also obtained for the unrelated case. This paper then presents a fast RLS algorithm for Gaussian input signals costing only O(N/sup 2/) multiplications where N is the number of linear terms in the filter input, the same order as the LMS algorithm, while the RLS algorithm for Volterra ADF costs O(N/sup 5/) multiplications per sample. Simulations shown that this algorithm works well also in non-Gaussian input cases.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis and fast RLS algorithms of quadratic Volterra ADF\",\"authors\":\"J. Chao\",\"doi\":\"10.1109/ICDSP.2002.1028199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that adaptive training of quadratic Volterra filters is an ill-conditioned problem, or the error surfaces of the adaptive filters (ADF) are always extremely steep in one particular direction but relatively flat in the rest of the directions. This result is a generalization of a previous report on the special case of when the inputs are delayed values of a single time series of Gaussian distribution. A complete analysis of the correlation matrix of inputs as multiple time series are also obtained for the unrelated case. This paper then presents a fast RLS algorithm for Gaussian input signals costing only O(N/sup 2/) multiplications where N is the number of linear terms in the filter input, the same order as the LMS algorithm, while the RLS algorithm for Volterra ADF costs O(N/sup 5/) multiplications per sample. Simulations shown that this algorithm works well also in non-Gaussian input cases.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

结果表明,二次型Volterra滤波器的自适应训练是一个病态问题,即自适应滤波器的误差面在某一特定方向上总是非常陡峭,而在其他方向上则相对平坦。这个结果是对先前关于输入是高斯分布的单个时间序列的延迟值的特殊情况的报告的推广。对于不相关的情况,也得到了输入作为多个时间序列的相关矩阵的完整分析。然后,本文提出了一种用于高斯输入信号的快速RLS算法,只需O(N/sup 2/)次乘法,其中N是滤波器输入中的线性项数,与LMS算法的阶数相同,而用于Volterra ADF的RLS算法每个样本需要O(N/sup 5/)次乘法。仿真结果表明,该算法在非高斯输入情况下也能很好地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and fast RLS algorithms of quadratic Volterra ADF
It is shown that adaptive training of quadratic Volterra filters is an ill-conditioned problem, or the error surfaces of the adaptive filters (ADF) are always extremely steep in one particular direction but relatively flat in the rest of the directions. This result is a generalization of a previous report on the special case of when the inputs are delayed values of a single time series of Gaussian distribution. A complete analysis of the correlation matrix of inputs as multiple time series are also obtained for the unrelated case. This paper then presents a fast RLS algorithm for Gaussian input signals costing only O(N/sup 2/) multiplications where N is the number of linear terms in the filter input, the same order as the LMS algorithm, while the RLS algorithm for Volterra ADF costs O(N/sup 5/) multiplications per sample. Simulations shown that this algorithm works well also in non-Gaussian input cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信