基于线性回归模型的新型冠状病毒流行预测

Ziye Hong
{"title":"基于线性回归模型的新型冠状病毒流行预测","authors":"Ziye Hong","doi":"10.1145/3429889.3429890","DOIUrl":null,"url":null,"abstract":"The Linear Regression Model is a useful prediction tool. In this paper, a linear regression model was used to analyze and predict the death toll of the novel corona virus (2019-nCov) outbreaks in 2019. Besides, an improved linear regression method was proposed to obtain a more accurate epidemic prediction model. In this paper, the author used one parameter to predict the data. Therefore, in the further research, more factors will be added to conduct a more accurate prediction.","PeriodicalId":315899,"journal":{"name":"Proceedings of the 1st International Symposium on Artificial Intelligence in Medical Sciences","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of 2019-nCoV Epidemic by Linear Regression Model\",\"authors\":\"Ziye Hong\",\"doi\":\"10.1145/3429889.3429890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Linear Regression Model is a useful prediction tool. In this paper, a linear regression model was used to analyze and predict the death toll of the novel corona virus (2019-nCov) outbreaks in 2019. Besides, an improved linear regression method was proposed to obtain a more accurate epidemic prediction model. In this paper, the author used one parameter to predict the data. Therefore, in the further research, more factors will be added to conduct a more accurate prediction.\",\"PeriodicalId\":315899,\"journal\":{\"name\":\"Proceedings of the 1st International Symposium on Artificial Intelligence in Medical Sciences\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Symposium on Artificial Intelligence in Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3429889.3429890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Symposium on Artificial Intelligence in Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429889.3429890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

线性回归模型是一种有用的预测工具。本文采用线性回归模型对2019年新型冠状病毒(2019- ncov)疫情死亡人数进行分析和预测。此外,提出了一种改进的线性回归方法,以获得更准确的流行病预测模型。在本文中,作者使用一个参数来预测数据。因此,在进一步的研究中,将会加入更多的因素来进行更准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of 2019-nCoV Epidemic by Linear Regression Model
The Linear Regression Model is a useful prediction tool. In this paper, a linear regression model was used to analyze and predict the death toll of the novel corona virus (2019-nCov) outbreaks in 2019. Besides, an improved linear regression method was proposed to obtain a more accurate epidemic prediction model. In this paper, the author used one parameter to predict the data. Therefore, in the further research, more factors will be added to conduct a more accurate prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信