基于PSO-LSTM和文本挖掘的电子商务顾客满意度评价方法研究

Qin Yang
{"title":"基于PSO-LSTM和文本挖掘的电子商务顾客满意度评价方法研究","authors":"Qin Yang","doi":"10.17993/3cemp.2023.120151.51-66","DOIUrl":null,"url":null,"abstract":"With the increase of social technology, e-commerce platforms have entered a period of rapid development. Improving customer satisfaction and purchase rate is the key to the survival of e-commerce platforms. Text mining and analysis of customer evaluation data will help to grasp the focus of customers and optimize the e- commerce platform. To this end, through text mining technology, the text comment data of five e-commerce platforms such as Amazon, eBay, Alibaba, Jingdong, and Taobao are collected, and the cleaned text is analyzed by particle swarm algorithm (PSO)-long short-term memory (LSTM) model. The data is subject to time scale extraction, and the extraction results are visualized and interpreted. The research shows that the logistics, price, freshness, quality and packaging of e-commerce platform merchants are important factors that affect the evaluation of e-commerce customer satisfaction.","PeriodicalId":365908,"journal":{"name":"3C Empresa. Investigación y pensamiento crítico","volume":"124 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on E-commerce Customer Satisfaction Evaluation Method Based on PSO-LSTM and Text Mining\",\"authors\":\"Qin Yang\",\"doi\":\"10.17993/3cemp.2023.120151.51-66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase of social technology, e-commerce platforms have entered a period of rapid development. Improving customer satisfaction and purchase rate is the key to the survival of e-commerce platforms. Text mining and analysis of customer evaluation data will help to grasp the focus of customers and optimize the e- commerce platform. To this end, through text mining technology, the text comment data of five e-commerce platforms such as Amazon, eBay, Alibaba, Jingdong, and Taobao are collected, and the cleaned text is analyzed by particle swarm algorithm (PSO)-long short-term memory (LSTM) model. The data is subject to time scale extraction, and the extraction results are visualized and interpreted. The research shows that the logistics, price, freshness, quality and packaging of e-commerce platform merchants are important factors that affect the evaluation of e-commerce customer satisfaction.\",\"PeriodicalId\":365908,\"journal\":{\"name\":\"3C Empresa. Investigación y pensamiento crítico\",\"volume\":\"124 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3C Empresa. Investigación y pensamiento crítico\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3cemp.2023.120151.51-66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C Empresa. Investigación y pensamiento crítico","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3cemp.2023.120151.51-66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着社交技术的提高,电子商务平台进入了快速发展期。提高客户满意度和购买率是电商平台生存的关键。对客户评价数据进行文本挖掘和分析,有助于把握客户关注的焦点,优化电子商务平台。为此,通过文本挖掘技术,收集亚马逊、eBay、阿里巴巴、京东、淘宝等五大电子商务平台的文本评论数据,并利用粒子群算法(PSO)长短期记忆(LSTM)模型对清理后的文本进行分析。对数据进行时间尺度提取,提取结果可视化并进行解释。研究表明,电商平台商家的物流、价格、新鲜度、质量和包装是影响电商客户满意度评价的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on E-commerce Customer Satisfaction Evaluation Method Based on PSO-LSTM and Text Mining
With the increase of social technology, e-commerce platforms have entered a period of rapid development. Improving customer satisfaction and purchase rate is the key to the survival of e-commerce platforms. Text mining and analysis of customer evaluation data will help to grasp the focus of customers and optimize the e- commerce platform. To this end, through text mining technology, the text comment data of five e-commerce platforms such as Amazon, eBay, Alibaba, Jingdong, and Taobao are collected, and the cleaned text is analyzed by particle swarm algorithm (PSO)-long short-term memory (LSTM) model. The data is subject to time scale extraction, and the extraction results are visualized and interpreted. The research shows that the logistics, price, freshness, quality and packaging of e-commerce platform merchants are important factors that affect the evaluation of e-commerce customer satisfaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信