{"title":"高度右偏数据的混合分布","authors":"Nehla Debbabi, M. Kratz, S. E. Asmi","doi":"10.1109/COMNET.2015.7566619","DOIUrl":null,"url":null,"abstract":"A non-uniform weighted two-components distribution is proposed in the present study for highly right skewed data modeling. We consider a G-GPD model that links a Gaussian distribution to a Generalized Pareto Distribution (GPD) at a junction point, with different weights for each component. It improves a G-GPD model with uniform weights that had been introduced in a preliminary study (see [1]). An iterative algorithm for parameters estimation is then provided, offering an accurate estimation of the Gaussian and GPD parameters, a judicious weighting of the model as well as a reliable position of the junction point, determined successfully in an unsupervised way. The performance of the iterative algorithm and the underlying new distribution, as compared with the existing G-GPD model, is studied on generated data and then on real extracellular neural recordings.","PeriodicalId":314139,"journal":{"name":"2015 5th International Conference on Communications and Networking (COMNET)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hybrid distribution for highly right skewed data\",\"authors\":\"Nehla Debbabi, M. Kratz, S. E. Asmi\",\"doi\":\"10.1109/COMNET.2015.7566619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-uniform weighted two-components distribution is proposed in the present study for highly right skewed data modeling. We consider a G-GPD model that links a Gaussian distribution to a Generalized Pareto Distribution (GPD) at a junction point, with different weights for each component. It improves a G-GPD model with uniform weights that had been introduced in a preliminary study (see [1]). An iterative algorithm for parameters estimation is then provided, offering an accurate estimation of the Gaussian and GPD parameters, a judicious weighting of the model as well as a reliable position of the junction point, determined successfully in an unsupervised way. The performance of the iterative algorithm and the underlying new distribution, as compared with the existing G-GPD model, is studied on generated data and then on real extracellular neural recordings.\",\"PeriodicalId\":314139,\"journal\":{\"name\":\"2015 5th International Conference on Communications and Networking (COMNET)\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 5th International Conference on Communications and Networking (COMNET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMNET.2015.7566619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 5th International Conference on Communications and Networking (COMNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMNET.2015.7566619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hybrid distribution for highly right skewed data
A non-uniform weighted two-components distribution is proposed in the present study for highly right skewed data modeling. We consider a G-GPD model that links a Gaussian distribution to a Generalized Pareto Distribution (GPD) at a junction point, with different weights for each component. It improves a G-GPD model with uniform weights that had been introduced in a preliminary study (see [1]). An iterative algorithm for parameters estimation is then provided, offering an accurate estimation of the Gaussian and GPD parameters, a judicious weighting of the model as well as a reliable position of the junction point, determined successfully in an unsupervised way. The performance of the iterative algorithm and the underlying new distribution, as compared with the existing G-GPD model, is studied on generated data and then on real extracellular neural recordings.