蝴蝶分类与机器学习方法的Android应用程序

Lili Zhu, P. Spachos
{"title":"蝴蝶分类与机器学习方法的Android应用程序","authors":"Lili Zhu, P. Spachos","doi":"10.1109/GlobalSIP45357.2019.8969441","DOIUrl":null,"url":null,"abstract":"In this paper, we evaluated traditional machine learning, deep learning and transfer learning methodologies by training and testing on a butterfly dataset, and determined the optimal model for an Android application. This application can detect the category of a butterfly by either capturing a real-time picture of a butterfly or choosing one picture from gallery.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Butterfly Classification with Machine Learning Methodologies for an Android Application\",\"authors\":\"Lili Zhu, P. Spachos\",\"doi\":\"10.1109/GlobalSIP45357.2019.8969441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we evaluated traditional machine learning, deep learning and transfer learning methodologies by training and testing on a butterfly dataset, and determined the optimal model for an Android application. This application can detect the category of a butterfly by either capturing a real-time picture of a butterfly or choosing one picture from gallery.\",\"PeriodicalId\":221378,\"journal\":{\"name\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP45357.2019.8969441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们通过在蝴蝶数据集上进行训练和测试,评估了传统的机器学习、深度学习和迁移学习方法,并确定了Android应用程序的最佳模型。这个应用程序可以通过捕捉蝴蝶的实时图片或从图库中选择一张图片来检测蝴蝶的类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Butterfly Classification with Machine Learning Methodologies for an Android Application
In this paper, we evaluated traditional machine learning, deep learning and transfer learning methodologies by training and testing on a butterfly dataset, and determined the optimal model for an Android application. This application can detect the category of a butterfly by either capturing a real-time picture of a butterfly or choosing one picture from gallery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信