多孔成形储氢材料研究进展

Jianwei Ren, B. North
{"title":"多孔成形储氢材料研究进展","authors":"Jianwei Ren, B. North","doi":"10.6000/1929-6002.2014.03.01.3","DOIUrl":null,"url":null,"abstract":"Development of safe and effective hydrogen storage systems becomes a critical factor for further implementation of fuel cell and hydrogen technologies. Among new approaches aimed at improving the performance of such systems, the concept of porous materials-based adsorptive hydrogen storage is now considered as a long-term solution due to the reversibility, good kinetics and absence of thermal management issues. However, the low packing densities associated with the porous materials such as carbon structure materials, zeolites, metal-organic frameworks lead to the compromised volumetric capacity, potential pipe contaminations and difficulties in handling, when introducing the powdered adsorbents into hydrogen storage systems. Some efforts have been devoted to solve this problem by shaping the porous materials into beads, pellets or monoliths and achieve higher storage densities at more moderate temperatures and pressures. This review will firstly state the essential properties of shaped structures for hydrogen adsorption, and then highlight the recent attributes that potentially can be utilized to shape porous materials into specific configurations for hydrogen storage applications. Later, several testing techniques on structured porous material will be also discussed.","PeriodicalId":394478,"journal":{"name":"Journal of Technology Innovations in Renewable Energy","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Shaping Porous Materials for Hydrogen Storage Applications: A Review\",\"authors\":\"Jianwei Ren, B. North\",\"doi\":\"10.6000/1929-6002.2014.03.01.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of safe and effective hydrogen storage systems becomes a critical factor for further implementation of fuel cell and hydrogen technologies. Among new approaches aimed at improving the performance of such systems, the concept of porous materials-based adsorptive hydrogen storage is now considered as a long-term solution due to the reversibility, good kinetics and absence of thermal management issues. However, the low packing densities associated with the porous materials such as carbon structure materials, zeolites, metal-organic frameworks lead to the compromised volumetric capacity, potential pipe contaminations and difficulties in handling, when introducing the powdered adsorbents into hydrogen storage systems. Some efforts have been devoted to solve this problem by shaping the porous materials into beads, pellets or monoliths and achieve higher storage densities at more moderate temperatures and pressures. This review will firstly state the essential properties of shaped structures for hydrogen adsorption, and then highlight the recent attributes that potentially can be utilized to shape porous materials into specific configurations for hydrogen storage applications. Later, several testing techniques on structured porous material will be also discussed.\",\"PeriodicalId\":394478,\"journal\":{\"name\":\"Journal of Technology Innovations in Renewable Energy\",\"volume\":\"163 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Technology Innovations in Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6000/1929-6002.2014.03.01.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Technology Innovations in Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-6002.2014.03.01.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

开发安全有效的储氢系统成为进一步实施燃料电池和氢技术的关键因素。在旨在改善此类系统性能的新方法中,基于多孔材料的吸附储氢概念现在被认为是一种长期解决方案,因为它具有可逆性、良好的动力学和无热管理问题。然而,当将粉状吸附剂引入储氢系统时,与多孔材料(如碳结构材料、沸石、金属有机框架)相关的低填充密度导致体积容量受损,潜在的管道污染和处理困难。为了解决这个问题,人们已经做出了一些努力,将多孔材料塑造成珠状、颗粒状或单体状,并在更温和的温度和压力下实现更高的存储密度。本文将首先阐述用于氢吸附的形状结构的基本特性,然后强调可能用于将多孔材料形状成特定构型用于储氢应用的最新属性。随后,还将讨论几种结构多孔材料的测试技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shaping Porous Materials for Hydrogen Storage Applications: A Review
Development of safe and effective hydrogen storage systems becomes a critical factor for further implementation of fuel cell and hydrogen technologies. Among new approaches aimed at improving the performance of such systems, the concept of porous materials-based adsorptive hydrogen storage is now considered as a long-term solution due to the reversibility, good kinetics and absence of thermal management issues. However, the low packing densities associated with the porous materials such as carbon structure materials, zeolites, metal-organic frameworks lead to the compromised volumetric capacity, potential pipe contaminations and difficulties in handling, when introducing the powdered adsorbents into hydrogen storage systems. Some efforts have been devoted to solve this problem by shaping the porous materials into beads, pellets or monoliths and achieve higher storage densities at more moderate temperatures and pressures. This review will firstly state the essential properties of shaped structures for hydrogen adsorption, and then highlight the recent attributes that potentially can be utilized to shape porous materials into specific configurations for hydrogen storage applications. Later, several testing techniques on structured porous material will be also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信